\(2+2^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

a)n(n+2013)

xét 2 tr hp.

tr hp 1:n là số lẻ 

=>n+2013 là số chẵn

=>n(n+2013) là số chẵn =>n(n+2013) chia hết cho 2.

tr hp 2:nlà số chẵn

=>n(n+2013) là số chẵn=> n(n+2013) chia hết cho 2.

b)M=21+22+23+24+....+220

M=2.1+2.2+2.4+2.8 +25.1+25.2+25.4+25.8+.......+217.1+217.2+217.4+217.8

M=2(1+2+4+8)+25(1+2+4+8)+....+217(1+2+4+8)

M=2.15+25.15+....+217.15

=>M chiia hết cho 5

31 tháng 10 2018

M = 2+2+23+24+.....+220 chứng tỏ rằng M chia hết cho 5

Số số hạng của tổng là :

(20-1) : 1 +1 = 20 ( số hạng )

Ta ghép 4 số vào 1 nhóm , như vậy có số nhóm là :

20 : 4 = 5 ( nhóm )

Ta có :

M = 2+22+23+24+24+.....+220

     = ( 2 + 22+23+24)+.....+(217+218+219+220)

     = 2.(1+2+3+4)+.....+217.(1+2+3+4)

     = 2.10+....217.10

      = (2+...+217 ) . 10 chia hết cho 5

Vậy ta có điều phải chứng minh.

24 tháng 10 2016

a) tổng S bằng

(2014+4).671:2=677 039

b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n

→2n.(n+2013)\(⋮̸\)2

C)M=2+22+23+...+220

=(2+22+23+24)+...+(217+218+219+220)

=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)

=30.1+...+216.(2+22+23+24)

=30.1+...+216.30

=30(1+25+29+213+216)\(⋮\)5

 

 

23 tháng 10 2016

c, M= 2 + 22 + 23 +........220

Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5

Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)

= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )

= 30+24 .30 + 28. 30 +.........+ 216.30

= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5

Vậy M chia hết cho 5

11 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath

16 tháng 12 2021

\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)

16 tháng 12 2021

Thank youvui

9 tháng 10 2015

a) Có:(2014-4):3+1=671 số hạng

    S=(2014+4).671:2=677039

c) ..........................................................

20 tháng 10 2018

1.

Trường hợp 1:

Nếu n=2k

Thì n.(n+5)=2k.(2k+5)

Vì 2k chia hết cho 2 nên tích n.(n+1) chia hết cho 2

Trường hợp 2:

Nếu n=2k+1

Thì n.(n+1)=2k+1(2k+1+1)

=>(2k+1)(2k+2)

Vì 2k+2 chia hết cho 2 nên tích n(n+1) chia hết cho 2

2.

\(n^2+n+1\)

\(n^2+n=n.n+n.1=n.\left(n+1\right)\)

\(\text{Vì :}n.\left(n+1\right)\text{là tích hai số tự nhiên liên tiếp nên có tận cùng là : 2,6,0}\)

\(\text{Vậy}.n\left(n+1\right)+1\text{sẽ có tận cùng là 3,7,1}\)

Vì tận cùng là 3,7,1 nên A không chia hết cho 2, không chia hết cho 5 (đpcm)

Chúc bạn học tốt!!!

20 tháng 10 2018

1. TH1 : n là số chẵn.

\(\Rightarrow n⋮2\Rightarrow n\left(n+5\right)⋮2\)

TH2 : n là số lẻ

\(\Rightarrow\left(n+5\right)⋮2\Rightarrow n\left(n+5\right)⋮2\)

Từ đó \(\Rightarrow n\left(n+5\right)⋮2\)với mọi \(n\in N\)

2. a) TH1 : Nếu n là số lẻ \(\Rightarrow n^2\)là số lẻ \(\Rightarrow\left(n^2+2\right)⋮2\)

1 là số lẻ \(\Rightarrow\left(n^2+n+1\right)̸\)không chia hết cho 2         (1)

TH2 : Nếu n là số chẵn \(\Rightarrow n^2\)là số chẵn \(\Rightarrow\left(n^2+2\right)⋮2\)

1 là số lẻ \(\Rightarrow\left(n^2+n+1\right)̸\)không chia hết cho 2         (2)

Từ (1) và (2) \(\Rightarrow A\)không chia hết cho 2 với mọi \(n\in N\)

b) 

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)


b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

11 tháng 10 2015

Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2

Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2

Vậy (n+4)(n+5) chia hết cho 2

 

11 tháng 12 2016

Câu a 

Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2

Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai

Vậy (n+4)(n+5) chia hết cho 2

Câu b

Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp

Gọi ƯCLN(n+2012; n+2013)=d

Vì ƯCLN(n+2012;n+2013)=d 

=> n+2012 chia hết cho d, n+2013 chia hết cho d

Mà n+2013-n+2012=1=> d=1

Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau

19 tháng 11 2016

Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)

\(A=2n+\left(...6\right)+\left(...1\right)\)

Ta có : 2n là số chẵn

\(2012^{2013}\) là số chẵn

\(2013^{2012}\) là số lẻ

\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ

Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ

=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )