tìm số tự nhiên x,y thỏa mãn phương trình : x^2-5x+7=3^y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu y=0 thì pt trở thành:\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x=0;x=3\)
Nếu y=1 thì pt trở thành:\(x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-4x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow x=1;x=4\)
Nếu \(y\ge2\Rightarrow3^y⋮9\)
Do x là số tự nhiên nên x có dạng \(3k;3k+1;3k+2\) với \(k\in N\)
Với \(x=3k\) thì pt trở thành:
\(\left(3k\right)^2+5\cdot3k+7=3^y\left(KTM\right)\) vì VT không chia hết cho 3.
Với \(x=3k+1\) thì pt trở thành:
\(\left(3k+1\right)^2+5\cdot\left(3k+1\right)+7=3^y\)
\(\Leftrightarrow9k^2-9k+3=3^y\left(KTM\right)\) vì VT không chia hết cho 9.
Với \(x=3k+2\) thì pt trở thành:
\(\left(3k+2\right)^2+5\cdot\left(3k+2\right)+7=3^y\)
\(\Leftrightarrow9k^2-3k+1=3^y\left(KTM\right)\) vì VT không chia hết cho 3.
Vậy các cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn là:\(\left(2;0\right);\left(3;0\right);\left(1;1\right);\left(4;1\right)\)
x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80 (chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)
Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)
LƯU Ý
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
\(x,y,z\ne0\)vế trái luôn lẻ VP luon chan=>\(x,y,z\)phai co so =0
y,z=0 vo nghiem
x=0=> 1+2017^y=2018^z
co nghiem (x,y,z)=(0,1,1)
Bài 2:
Gọi số ban đầu là \(\overline{ab}\)
Theo đề, ta có: 5a+2b=29 và 10b+a-10a-b=36
=>5a+2b=29 và -9a+9b=36
=>a=3 và b=7
a: Khi m=-5 thì pt sẽ là x^2-5x-6=0
=>x=6 hoặc x=-1
b:
Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29
Để pt có hai nghiệm thì -4m+29>=0
=>m<=29/4
x1-x2=3
=>(x1-x2)^2=9
=>(x1+x2)^2-4x1x2=9
=>5^2-4(m-1)=9
=>4(m-1)=25-9=16
=>m-1=4
=>m=5(nhận)
c: 2x1-3x2=5 và x1+x2=5
=>x1=4 và x2=1
x1*x2=m-1
=>m-1=4
=>m=5(nhận)
Xét x = 0
Ta có 1 + 2017y = 2018z
mà 1+2017 = 2018
Nên x = 0; y = z = 1
Xét x > 0
2016 tận cùng 6 nên 2016x luôn tận cùng 6
2017y có tận cùng là 7y và là 1, 7, 9, 3
2018z có tận cùng là 2, 4, 6, 8
Có 6 + 1= 7
6 + 3 = 9
6 + 7 = 13
6 + 9 = 15
Vế trái không có tận cùng bằng VP nên không thỏa mãn
Vậy pt có nghiệm duy nhất là (x; y; z) = (0; 1; 1)