Cho đa thức P(x) = 2x^2 + mx - 10
a) Tìm m để P(x) có một nghiệm là 2
b) Tìm nghiệm còn lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề của bạn kiểu gì ý tớ khong là được.Bạn cho lại đề đi.
Vì -2 là nghiệm của phương trình nên thay x = -2 vào đa thức f(x) ta được :
\(f\left(-2\right)=4-2m+2=0\Leftrightarrow-2m=-6\Leftrightarrow m=3\)
Với m = 3 đa thức f(x) có dạng : \(f\left(x\right)=x^2+3x+2=0\)
\(\Leftrightarrow x^2+2x+x+2=0\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=-2\)
Vậy nghiệm còn lại là -1
b: Thay x=-5 vào pt, ta được:
\(m+25+65=0\)
hay m=-90
Theo đề, ta có: \(x_1+x_2=13\)
nên \(x_2=18\)
c: Thay x=-3 vào pt, ta được:
\(18+3\left(m+4\right)+m=0\)
=>4m+30=0
hay m=-15/2
Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)
hay \(x_2=-1.25\)
a) Khi x = 2 là nghiệm của đa thức f(x) thì
\(f\left(x\right)=a.2^2-\left(5a-2\right).2+2=0\\ \Leftrightarrow4a-10a+4+2=0\\ \Leftrightarrow-6a=-6\\ \Leftrightarrow a=1\)
Vậy để x = 2 là nghiệm của đa thức f(x) thì a = 1
b) Khi a = 1 để f(x) có nghiệm thì
\(f\left(x\right)=x^2-x.\left(5-2\right)+2=0\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy khi a = 1 thì nghiệm của đa thức f(x) là \(x\in\left\{1;2\right\}\)
a/Ta có:
\(B\left(-10\right)=\left(-10\right)^2+9\cdot\left(-10\right)-10\)
\(=100-90-10\)
\(=0\)
Do đó -10 là một nghiệm của B(x)
b/\(B\left(x\right)=x^2+9x-10\)
\(=x\left(x+9\right)-10\)
Do đó để B(x) có nghiệm thì \(x\left(x+9\right)-10=0\)
\(\Rightarrow x\left(x+9\right)=10\)
\(\Rightarrow x=1\)
a)
với `x=-10` thì
`(-10)^2+9*(-10)-10`
`=100-90-10`
`=0`
Vậy -10 là nghiệm của `B(x)`
b)
`x^2+9x-10=0`
`=>x^2+10x-x-10=0`
`=>x(x+10)-(x+10)=0`
`=>(x+10)(x-1)=0`
`=>x+10=0` hoặc `x-1=0`
`=>x=-10` hoặc `x=1`
vậy nghiệm còn lại của đa thức là 1
\(\text{Để}\)\(f\left(x\right)\)\(\text{có nghiệm là}\)\(x=-1\)
\(m\left(-1\right)^2-2\left(-1\right)+8=0\)
\(\Leftrightarrow m+2+8=0\)
\(\Leftrightarrow m+10=0\)
\(\Leftrightarrow m=-10\)
\(\text{Vậy}\)\(m=-10\)\(\text{thì}\)\(f\left(x\right)\)\(\text{có nghiệm là}\) \(-1\)
phần a bạn Nguyễn xuân khải làm đúng rồi nên mình chỉ làm phần b
b)h(2)=2*2^2-7m*2+4=8-14m+4=0
=>4-14m=0
=>14m=4
=>m=\(\frac{2}{7}\)
Vậy m=\(\frac{2}{7}\)
a/ Thay x=2 vào phương trình P(x)=0. Ta được:
2.22+m.2-10=0
<=> 2m-2=0 => m=1
b/ PT đã cho có dạng: 2x2+x-10=0
<=> 2x2-4x+5x-10=0
<=> 2x(x-2)+5(x-2)=0
<=> (x-2)(2x+5)=0
=> Nghiệm còn lại là: 2x+5=0 => x= -5/2