K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

a. (x-1/2)2=0

=> x-1/2=0

=> x=1/2

b. (x-2)2=1

=> (x-2)2=12=(-1)2

=> x-2=1             hoặc x-2=-1

=> x=3               hoặc  x=1

c. (2x-10)3=-8

=> (2x-10)3=(-2)3

=> 2x-10=-2

=> 2x=-2+10

=> 2x=8

=> x=8:2

=> x=4

d. (x+1/2)2=1/16

=> (x+1/2)2=(1/4)2=(-1/4)2

=> x+1/2=1/4               hoặc x+1/2=-1/4

=> x=1/4-1/2                hoặc  x=-1/4-1/2

=> x=-1/4                   hoặc x=-3/4

27 tháng 7 2015

(x - 1/2)2 = 0

=> x - 1/2 = 0

x = 1/2

...............Tương tự

23 tháng 9 2021

a) \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

b) \(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

c) \(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x-1=-3\Leftrightarrow x=-1\)

d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{\sqrt{6}}{6}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3+\sqrt{6}}{6}\\x=-\dfrac{3+\sqrt{6}}{6}\end{matrix}\right.\)

b: Ta có: \(\left(x-2\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

c: Ta có: \(\left(2x-1\right)^3=-8\)

\(\Leftrightarrow2x-1=-2\)

\(\Leftrightarrow2x=-1\)

hay \(x=-\dfrac{1}{2}\)

22 tháng 3 2021

a, 3x - 7 = 0

<=> 3x = 7

<=> x = 7/3

b, 8 - 5x = 0

<=> -5x = -8

<=> x = 8/5

c, 3x - 2 = 5x + 8

<=> -2x = 10

<=> x = -5

e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)

12 tháng 8 2021

a,x(x-2)+x-2=0

⇔ (x-2)(x+1)=0

⇔ x=2;x=-1

b,x3+x2+x+1=0

⇔ x2(x+1)+x+1=0

⇔ (x+1)(x2+1)=0

⇔ x=-1

 

12 tháng 4 2022

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

b.\(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(ĐK:x\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12+\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12+\left(x^2-4\right)\)

\(\Leftrightarrow x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow-2x=-4\)

\(\Leftrightarrow x=2\left(ktm\right)\)

Vậy pt vô nghiệm

12 tháng 4 2022

a)

<=> x (x-2 ) = 0

<=> x =0 

x = 2

b)

đkxđ : x khác 2 , x khác -2

<=> \(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{12}{x^2-4}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\dfrac{x^2+3x+2}{....}-\dfrac{5x-10}{....}-\dfrac{12}{...}+\dfrac{x^2-4}{....}=0\)

<=> \(x^2+3x+2-5x+10-12+x^2-4=0\)

<=> \(2x^2-2x-4=0\)

<=> x =2 (ktm)

Vậy..

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

2 tháng 11 2021

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

18 tháng 10 2021

Bài 3: 

b: \(x^2+2x+1=\left(x+1\right)^2\)

c: \(x^2-16=\left(x-4\right)\left(x+4\right)\)

d: \(\left(2x-1\right)^2-\left(x+3\right)^2\)

\(=\left(2x-1-x-3\right)\left(2x-1+x+3\right)\)

\(=\left(x-4\right)\left(3x+2\right)\)

14 tháng 12 2021

\(a,=\dfrac{5x+30+x^2-30}{x\left(x+6\right)}=\dfrac{x\left(x+5\right)}{x\left(x+6\right)}=\dfrac{x+5}{x+6}\\ b,=\dfrac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{x+3}{\left(x-1\right)^2}\)

\(c,=\dfrac{3x^2+2x+1+x^2-2x+1-2x^2-2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)

a: =>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

b: =>2x^2=11

=>x^2=11/2

=>\(x=\pm\dfrac{\sqrt{22}}{2}\)

c: Δ=5^2-4*1*7=25-28=-3<0

=>PTVN

f: =>6x^4-6x^2-x^2+1=0

=>(x^2-1)(6x^2-1)=0

=>x^2=1 hoặc x^2=1/6

=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)

d: =>(5-2x)(5+2x)=0

=>x=5/2 hoặc x=-5/2

e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2

=>3x^2+5x-8=0 và x>=-1/2

=>3x^2+8x-3x-8=0 và x>=-1/2

=>(3x+8)(x-1)=0 và x>=-1/2

=>x=1

17 tháng 3 2022

Chọn C. Cặp x, y thỏa mãn là (-1;-6) hoặc (0;2).