K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)

A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)

A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2

A>4

13 tháng 4 2019

cảm ơn nha

1 tháng 6 2018

Câu hỏi của Hoàng Đỗ Việt - Toán lớp 6 | Học trực tuyến

Bài 1 :

Ta có;\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}>\frac{1}{30}.10=\frac{1}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}.30>\frac{1}{30}.24=\frac{2}{5}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{3}+\frac{2}{5}=\frac{11}{15}\left(1\right)\)

Mặt khác :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}.20=1\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}.20=\frac{1}{2}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< 1+\frac{1}{2}=\frac{3}{2}\left(2\right)\)

Từ (1 ) và (2) ta suy ra điều phải chứng minh

Bài 2 : 

Đặt \(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}\)

MỘT MẶT ,TA CÓ THỂ VIẾT

\(S=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)\(+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}\right)\)\(+\left(\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}+\frac{1}{64}\right)-\frac{1}{64}\)

\(>\frac{1}{2}.2+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32-\frac{1}{64}\)\(=\frac{7}{2}-\frac{1}{64}=\frac{223}{64}>\frac{192}{64}=3\left(1\right)\)

Mặt khác ,ta lại có\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)\)\(+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)\)\(+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)< \)\(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32=6\left(2\right)\)

Từ (1) và (2 ) ta kết luận \(3< S< 6\)

Chúc bạn học tốt ( -_- )

28 tháng 7 2018

\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)

\(=1+\frac{1}{2}+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32\)

\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(=1+\frac{1}{2}.6\)

\(=1+3\)

\(=4\)

~~ Bố thí cái li.ke ~~

27 tháng 12 2017

Ta có : 

A= 1+ 1/2 + 1/3 +1/4 + ...+ 1/63 + 1/64 

   =1 + ( 1/2 + 1/3 + 1/4 ) + ( 1/5 +1/6 + ..+1/8 ) + ( 1/9 + 1/10 + ..+ 1/16 ) + ( 1/17  + 1/18 + ...+ 1/32 ) + ( 1/33 + 1/34 + ...+1/63 + 1/64 ) 

=> A > 1 + ( 1/2 + 1/4.2 ) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32 

     A > 1 + 1/2 + 1/2 + 1/2 +1/2 

  =>A > 4

27 tháng 12 2017

thanks

13 tháng 4 2017

Ta có: H=(1/2+1/3+1/4)+(1/5+...+1/8)+(1/9+1/16)+(1/17+...+1/63)

=> H=13/12 + (1/5+...+1/8)+(1/9+...+1/16)+(1/17+...+1/63)

=> H> 1 + 4x(1/8) + 8x (1/16) + (1/17+...+1/63)

=> H> 1+ 1/2 + 1/2 + (1/17+...+1/63)

=> H> 1+1+(1/17+...+1/63)

=> H>1+1

=> H>2

25 tháng 7 2016

a) \(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+...\)

\(A=\frac{777...}{1000...}\)

b) 1/2+1/3+1/4+…+1/63=1/2+(1/3+1/4)+(1/5+1/6+…+1/10)+(1/11+1/12+….+1/20)+(1/21+1/22+….1/63).
Ta thấy:
1/3+1/4>1/4+1/4=1/2
1/5+1/6+…+1/10>5/10=1/2
1/11+1/12+….+1/20>10/20=1/2
Thêm.cái 1/2 sắn có là đủ >2 rồi nhể

23 tháng 2 2017

1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)

hay 1/2+1/3+1/4+...+1/63>62 x 1/31

nên 1/2+1/3+1/4+...+1/63>2(dpcm)