Cho tam giác abc có góc A bằng 120 độ. Vẽ phân giác AD,BE,CF của tam giác ABC.
CMR: DE vuông tại DF
Giúp mik với mik cần đáp án gấp! Mik xin cảm ơn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét tứ giác BFHD có
\(\widehat{BFH}+\widehat{BDH}=180^0\)
nên BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{FBH}=\widehat{FDH}\)(hai góc nội tiếp cùng chắn cung FH)
hay \(\widehat{ABE}=\widehat{FDH}\)(1)
Xét tứ giác CDHE có
\(\widehat{CDH}+\widehat{CEH}=180^0\)
nên CDHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{HDE}=\widehat{ECH}\)(Hai góc nội tiếp cùng chắn cung EH)
hay \(\widehat{HDE}=\widehat{ACF}\)(2)
Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE\(\sim\)ΔACF(g-g)
Suy ra: \(\widehat{ABE}=\widehat{ACF}\)(3)
Từ (1), (2) và (3) suy ra \(\widehat{FDH}=\widehat{EDH}\)
hay DH là tia phân giác của \(\widehat{EDF}\)
d: BK=BA+AK
BC=BE+EC
mà BA=BE và AK=EC
nên BK=BC
=>góc BKC=góc BCK
a: BC=5
Xet ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=5/7
=>DB=15/7; DC=20/7
c: \(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)
hggfghfyufh