K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

Ta có : 

\(a+b=c+d\)

\(\Rightarrow\)\(a=-b+c+d\)

Thay \(a=-b+c+d\) vào \(ab+1=cd\) ta được : 

\(\left(-b+c+d\right)b+1=cd\)

\(\Leftrightarrow\)\(-b^2+bc+bd+1=cd\)

\(\Leftrightarrow\)\(\left(-b^2+bd\right)+\left(bc-cd\right)=-1\)

\(\Leftrightarrow\)\(-b\left(b-d\right)+c\left(b-d\right)=-1\)

\(\Leftrightarrow\)\(\left(c-b\right)\left(b-d\right)=-1\)

Vì \(a,b,c,d\inℤ\) nên có 2 trường hợp : 

Trường hợp 1 : 

\(\hept{\begin{cases}c-b=1\\b-d=-1\end{cases}\Leftrightarrow\hept{\begin{cases}c=b+1\\b+1=d\end{cases}\Leftrightarrow}\hept{\begin{cases}c=b+1\\c=d\end{cases}}}\)

\(\Rightarrow\)\(c=d\)

Trường hợp 2 : 

\(\hept{\begin{cases}c-b=-1\\b-d=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=c+1\\b=d+1\end{cases}}}\)

\(\Rightarrow\)\(c+1=d+1\)

\(\Rightarrow\)\(c=d\)

Vậy \(c=d\)

Chúc bạn học tốt ~ 

13 tháng 12 2024

Ngu

 

20 tháng 7 2015

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

25 tháng 4 2018

a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b)*b+1=cd 

<=> cb+db-cd+1-b^2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d.

14 tháng 8 2016

 a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

14 tháng 8 2016

cop

19 tháng 10 2023

\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)

\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)

\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)

\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)

Ta có

\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)

\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)

Thay (1) vào (2)

\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)

Do \(a>b>c>d\)

\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)

\(\Leftrightarrow ab+cd>ac+bd\) (4)

Và 

\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)

\(\Leftrightarrow ac+bd>ad+bc\) (5)

Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\) 

Ta có

(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)

Vế trái là số nguyên => vế phải cũng phải là số nguyên

Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)

\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd

=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố

18 tháng 10 2023

mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà

 

2 tháng 10 2016

Ta có: a+b=c+d

\(\Leftrightarrow a=c+d-b\)

Thay vào : ab+1=cd, ta được:

\(\left(c+d-b\right)b+1=cd\)

\(\Leftrightarrow bc+bd-b^2+1-cd=0\)

\(\Leftrightarrow\left(bc-b^2\right)+\left(bd-cd\right)=-1\)

\(\Leftrightarrow-b\left(b-c\right)+d\left(b-c\right)=-1\)

\(\Leftrightarrow\left(b-c\right)\left(d-b\right)=-1\)

Vì b,c,d là số nguyên nên suy ra: b-c=b-d=1 hoặc b-c=b-d=-1

Vậy: c=d