chứng minh rằng đa thức sau vô nghiệm :\(x^4\)\(+2x^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x+3=0\)
\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)
=> \(x^2+2x+3\)vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)
\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)
Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm
x^2 + 2x +2016 = x^2 + x + x + 1 +2015
= x ( x+1 ) + 1 ( x + 1 ) +2015
= ( x + 1 ) ( x +1 ) + 2015
= ( x + 1 )^2 + 2015
Xét (x + 1 )^2 + 2015 = 0
=> ( x + 1 )^2 = - 2015 ( vô lí )
vì ( x + 1 )^2 luôn lớn hơn hoặc bằng 0 với mọi x
vậy đa thức trên vô nghiệm ( đúng ko các bạn )
Mọi người biết Trần Thu Hà như thế nào ko :cướp nick hu hu vừa mới cướp nick mình
nói tục tiểu
đi làm gian hồ
mình sẽ mét với online math luôn
\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)
\(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
= \(\left(x^2+2\right)\left(x^2+x+1\right)\)
Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)
Suy ra , đa thức trên vô nghiệm
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm
\(x^2+2x+2=x^2+x+x+1+1=x\left(x+1\right)+\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow x^2+2x+2\) vô nghiệm
Bài làm:
Ta có: \(x^2-x+1=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)(vô lý)
=> không tồn tại x thỏa mãn
=> Đa thức vô nghiệm
tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0 (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.