K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

Xét ΔHAC và ΔABC có

góc H=góc A

góc C chung

=>ΔHAC đồng dạngvới ΔABC

b: Xet ΔABC vuông tại A có AH vuông góc BC

nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2

30 tháng 8 2019

cái này chỉ chứng minh các tam giác đồng dạng chứa các cạnh trên là ra thui

20 tháng 3 2018

đề sai hay sao thế bn ,kiểm tra lại giùm mk

14 tháng 3 2019

Đúng rùi đề bài bị sai là cái chắc

11 tháng 6 2023

a) Xét ΔABH và ΔABC ta có:

\(\widehat{AHB}=\widehat{BAC}\)

\(\widehat{B}\) chung

→ΔABH ∼ ΔABC(g-g)(1)

\(\rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)

\(\Rightarrow AB.AC=AH.BC\)

b) Vì ΔABH ∼ ΔABC (cmt)

\(\rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\rightarrow AC.AC=HC.BC\)

\(\Rightarrow AC^2=HC.BC\)

c) Xét ΔAHC và ΔABC ta có:

\(\widehat{C}\) chung

\(\widehat{AHC}=\widehat{BAC}=90^0\)

→ΔAHC ∼ ΔABC(g-g)(2)

Từ (1) và (2)→ΔABH ∼ ΔAHC

\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

\(\rightarrow AH.AH=HB.HC\)

\(\Rightarrow AH^2=HB.HC\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

 

Lời giải:

1.

Xét tam giác $BHA$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$

Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)

$\Rightarrow CA^2=CH.CB$

Do đó:

$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$ 

(đpcm)

b. Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$

$\Rightarrow AH^2=BH.CH$

c.

$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$

$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$

$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$

.d. Hiển nhiên theo công thức diện tích. 

 

21 tháng 11 2018

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM