Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
Xét ΔHAC và ΔABC có
góc H=góc A
góc C chung
=>ΔHAC đồng dạngvới ΔABC
b: Xet ΔABC vuông tại A có AH vuông góc BC
nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2
a) Xét ΔABH và ΔABC ta có:
\(\widehat{AHB}=\widehat{BAC}\)
\(\widehat{B}\) chung
→ΔABH ∼ ΔABC(g-g)(1)
\(\rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)
\(\Rightarrow AB.AC=AH.BC\)
b) Vì ΔABH ∼ ΔABC (cmt)
\(\rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
\(\rightarrow AC.AC=HC.BC\)
\(\Rightarrow AC^2=HC.BC\)
c) Xét ΔAHC và ΔABC ta có:
\(\widehat{C}\) chung
\(\widehat{AHC}=\widehat{BAC}=90^0\)
→ΔAHC ∼ ΔABC(g-g)(2)
Từ (1) và (2)→ΔABH ∼ ΔAHC
\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
\(\rightarrow AH.AH=HB.HC\)
\(\Rightarrow AH^2=HB.HC\)
Lời giải:
1.
Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$
Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)
$\Rightarrow CA^2=CH.CB$
Do đó:
$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$
(đpcm)
b. Xét tam giác $BHA$ và $AHC$ có:
$\widehat{BHA}=\widehat{AHC}=90^0$
$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)
$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)
$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$
$\Rightarrow AH^2=BH.CH$
c.
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$
$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$
$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$
.d. Hiển nhiên theo công thức diện tích.
a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)
=> AB/BC = BH/AB hay AB^2 = BH.HC
và cm tamgiac ABC đồng dạng với tamgiac HAC(g.g)
=> AC/BC = HC/AC hay AC^2 = CH.BH
a. Xét tg vuông ABC và tg vuông HBA có:
\(\widehat{ABH}\)chung
\(\Rightarrow\Delta ABC~\Delta HBA\)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)
\(\Rightarrow AB^2=HB.BC\)
Cmtt:\(\Delta ABC~HAC\)
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=BC.HC\)
b. lát làm tiếp nhá