cho tam giác ABC có BC=12, các đường trung tuyến AD,BE,CF cắt nhau tại G
a) chứng minh BE+CF>18
B)GỌI M VÀ N lần lượt là trung điểm của GB và GC. chứng minh rằng 3 đường thẳng AD,BN,CM đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
AD,BE,CF là trung tuyến
AD,BE,CF cắt nhau tai G
=>G là trọng tâm
=>BG=2/3BE=2BM và CG=2/3CF=2CN
=>M,N lần lượt là trung điểm của GB,GC
=>GD,CM,BN đồng quy
=>AD,CM,BN đồng quy
Câu hỏi của ✎﹏ Ƈøoȴ _ Ǥɩ®ʆ _☜♥☞ ✓ - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
-△ABC có: G là trọng tâm; AD, BE, CF là các trung tuyến:
\(\Rightarrow BG=\dfrac{2}{3}BE;CG=\dfrac{2}{3}CF\)
\(\Rightarrow BG=2BM;CG=2CN\)
\(\Rightarrow\)M là trung điểm BG ; N là trung điểm CG.
-△BCG có: CM là trung tuyến (N là trung điểm CG) ; BN là trung tuyến
(M là trung điểm BG) ; GD là trung tuyến (D là trung điểm BC)
\(\Rightarrow\)AD; BN; CM đồng quy.
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)