Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
AD,BE,CF là trung tuyến
AD,BE,CF cắt nhau tai G
=>G là trọng tâm
=>BG=2/3BE=2BM và CG=2/3CF=2CN
=>M,N lần lượt là trung điểm của GB,GC
=>GD,CM,BN đồng quy
=>AD,CM,BN đồng quy
Câu hỏi của ✎﹏ Ƈøoȴ _ Ǥɩ®ʆ _☜♥☞ ✓ - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
-△ABC có: G là trọng tâm; AD, BE, CF là các trung tuyến:
\(\Rightarrow BG=\dfrac{2}{3}BE;CG=\dfrac{2}{3}CF\)
\(\Rightarrow BG=2BM;CG=2CN\)
\(\Rightarrow\)M là trung điểm BG ; N là trung điểm CG.
-△BCG có: CM là trung tuyến (N là trung điểm CG) ; BN là trung tuyến
(M là trung điểm BG) ; GD là trung tuyến (D là trung điểm BC)
\(\Rightarrow\)AD; BN; CM đồng quy.
a: Xét ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>AG là trung tuyến của ΔABC
=>Hlà trung điểm của CB
Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔGAC có
GD,CI,AK là trung tuyến
=>GD,CI,AK đồng quy