K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Ta có: \(a^2+b^2\)

\(=\left(a-b\right)^2+2ab\)

\(=3^2+2\cdot\left(-2\right)=9-4=5\)

c) Ta có: \(a^3-b^3\)

\(=\left(a-b\right)^3-3ab\left(a-b\right)\)

\(=3^3-3\cdot\left(-2\right)\cdot3\)

\(=27+18=45\)

13 tháng 7 2021

cho mình hỏi yêu cầu đề bài là gì vậy?

17 tháng 10 2021

\(a,a^2+b^2=\left(a+b\right)^2-2ab=9^2-2\cdot20=41\\ b,a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=41^2-2\left(ab\right)^2\\ =1681-2\cdot400=881\\ c,\left(a-b\right)^2=a^2+b^2-2ab=41-2\cdot20=1\\ \Rightarrow a-b=1\\ \Rightarrow C=a^2-b^2=\left(a-b\right)\left(a+b\right)=9\cdot1=9\)

các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)Bài 1.Tính:a) (a2- 4)(a2+4)                            b) (a-b+c)(a+b+c)               g)  (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4)        d) (3x+y-2)2                        h) (x2- 4x + 16)(x+4)e) (22 - 1)(22 +1)(24 + 1)(28 + 1)   f) (x+y)3 - (x-y)3              k) Bài 2: Tìm x biết: a) (2x + 1)2 - 4(x + 2)2 = 9;        b) (x -2)2 – (x +3)2 = 45c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;                  d) (x +...
Đọc tiếp

các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)

Bài 1.Tính:

a) (a2- 4)(a2+4)                            b) (a-b+c)(a+b+c)               g)  (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4)        d) (3x+y-2)2                        h) (x2- 4x + 16)(x+4)

e) (22 - 1)(22 +1)(24 + 1)(28 + 1)   f) (x+y)3 - (x-y)3              k)

Bài 2: Tìm x biết:

a) (2x + 1)2 - 4(x + 2)2 = 9;        

b) (x -2)2 – (x +3)2 = 45

c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;                  

d) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10

Bài 3.Biết số tự nhiên x chia cho 7 dư 6.CMR:x2 chia cho 7 dư 1

Bài 4. So sánh:

a) A = 1997 . 1999 và B = 19982

b)A = 4(32 + 1)(34 + 1)…(364 + 1) và B = 3128 - 1

Bài 5: Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G . gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK

Bài 6: Cho tam giác ABC. Trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB. Từ M và N kẻ các đường thẳng song song với BC, chúng cắt AC tại E và F. Tính độ dài các đoạn thẳng NF và BC biết ME = 5cm.

Bài 7: Cho D ABC có BC =4cm, các trung tuyến BD, CE. Gọi M,N theo thứ tự là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE theo thứ tự là P, Q

a) Tính MN                        b) CMR: MP =PQ =QN

Bài 8: Cho hình thang ABCD (AB // CD) các tia phân giác góc ngoài đỉnh A và D cắt nhau tại H. Tia phan giác góc ngoài đỉnh B và C cắt nhau ở K. CMR:

a)     AH ^ DH ; BK ^ CK

b)    HK // DC

c)     Tính độ dài HK biết AB = a ; CD = b ; AD = c ; BC = dBài 1.Tính:

 

3
7 tháng 10 2021

\(a,=a^8-16\\ b,\left(a+c\right)^2-b^2=a^2+2ac+c^2-b^2\\ c,=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\\ =\left(a^4-b^4\right)\left(a^4+b^4\right)=a^8-b^8\\ d,=\left[\left(3x+y\right)-2\right]^2=\left(3x+y\right)^2-4\left(3x+y\right)+4\\ =9x^2+6xy+y^2-12x-4y+4\\ h,=x^3+64\\ e,=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=...\\ f,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\)

7 tháng 10 2021

e đăng đừng Ctrl+V nhiều quá lóe mắt :vv

11 tháng 7 2021

`a)a(2+b)+b(a+2)`

`=2a+ab+ab+2b`

`=2(a+b)+2ab`

`=2.10+2.(-36)`

`=20-72=-52`

`b)a^2+b^2`

`=(a+b)^2-2ab`

`=10^2-2.(-36)`

`=100+72=172`

`c)a^3+b^3`

`=(a+b)(a^2-ab+b^2)`

`=10[(a+b)^2-3ab]`

`=10[10^2-3.(-36)]`

`=10(100+108)`

`=10.208=2080`

11 tháng 7 2021

a, \(=>2a+ab+ab+2b=2\left(a+b+ab\right)=2\left(10-36\right)=-52\)

b, \(a^2+b^2=a^2+2ab+b^2-2ab=\left(a+b\right)^2-2ab=\left(10\right)^2-2\left(-36\right)=172\)

c, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=10\left[\left(a+b\right)^2-3ab\right]\)

\(=10\left[10^2-3\left(-36\right)\right]=2080\)

18 tháng 8 2019

Với a = -7 và b = 4. Ta có:

a2+2.a.b + b2 = (-7)2+ 2.(-7).4 + 42 = 49 – 56 + 16 = 9

(a + b). (a + b) = [(-7) + 4].[(-7) + 4] = (-3).(-3) = 9

17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1