\(\dfrac{x^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

Biến đổi tương đương:

\(\Leftrightarrow a^6+a^5b+ab^5+b^6\ge a^6+a^4b^2+a^2b^4+b^6\)

\(\Leftrightarrow a^5b-a^4b^2-a^2b^4+ab^5\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

29 tháng 5 2017

Bài 4:

Áp dụng bất đẳng thức Cauchy-shwarz dạng engel ta có:

\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{9}=1\)

Dấu " = " xảy ra khi a = b = c = 1

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Bài 1:
Ta có:
\(a^2+b^2-\frac{(a+b)^2}{2}=\frac{2(a^2+b^2)-(a+b)^2}{2}=\frac{(a-b)^2}{2}\geq 0\)

\(\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2^2}{2}=2\)

(đpcm)

Dấu "=" xảy ra khi $a=b=1$

23 tháng 6 2017

$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

24 tháng 6 2017

còn câu 1 nữa Ace Legona

30 tháng 12 2022

3: =>a^2c^2+a^2d^2+b^2c^2+b^2d^2>=a^2c^2+2abcd+b^2d^2

=>a^2d^2-2abcd+b^2c^2>=0

=>(ad-bc)^2>=0(luôn đúng)

NV
9 tháng 5 2019

Câu 1:

\(\Delta=m^2-4\left(m+3\right)\le0\)

\(\Leftrightarrow m^2-4m-12\le0\Rightarrow-2\le m\le6\)

Câu 2:

Để BPT đã cho vô nghiệm tương đương \(mx^2-4\left(m+1\right)x+m-5\le0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4\le0\end{matrix}\right.\) \(\Leftrightarrow-4\le m\le-\frac{1}{3}\)

Tất cả các đáp án đều sai

Câu 3:

Để pt có 2 nghiệm pb

\(\Leftrightarrow\Delta'=\left(m-2\right)^2+2\left(m-2\right)>0\)

\(\Leftrightarrow m^2-2m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)

Tiếp tục tất cả các đáp án đều sai, đề bài gì kì vậy ta

28 tháng 11 2019

\(\Leftrightarrow a^{10}+a^4b^6+a^6b^4+b^{10}\le2a^{10}+2b^{10}\)

\(\Leftrightarrow a^{10}+b^{10}-a^4b^6-a^6b^4\ge0\)

\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^4-b^4\right)\left(a^6-b^6\right)\ge0\) (lđ)

Bởi 2 cái ngoặc kia luôn cùng âm hoặc cùng dương

10 tháng 8 2017

\(BĐT\Leftrightarrow\sum\dfrac{2bc}{1+a^2}\le\dfrac{3}{2}\Leftrightarrow\sum\dfrac{-2bc}{2a^2+b^2+c^2}\ge-\dfrac{3}{2}\)

\(\Leftrightarrow\sum\dfrac{2a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}\ge\dfrac{3}{2}\)

ÁP dụng BĐT cauchy-schwarz:

\(\sum\dfrac{2a^2}{2a^2+b^2+c^2}\ge\dfrac{2\left(a+b+c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)

\(\sum\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}=\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(a-c\right)^2}{2b^2+a^2+c^2}\ge\dfrac{4\left(a-c\right)^2}{4\left(a^2+b^2+c^2\right)}=\dfrac{\left(a-c\right)^2}{a^2+b^2+c^2}\)

( Lưu ý : \(\left(c-a\right)^2=\left(a-c\right)^2\)) (1)

Do vậy cần chứng minh \(\dfrac{\left(a+b+c\right)^2+2\left(a-c\right)^2}{2\left(a^2+b^2+c^2\right)}\ge\dfrac{3}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)^2+4\left(a-c\right)^2\ge6\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow ab+bc-ac-b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\) (*)

(*) không phải luôn đúng, tuy nhiên ta có thể ép cho nó đúng .

bằng cách đáng giá tương tự BĐT (1) :

\(\left\{{}\begin{matrix}\dfrac{\left(b-a\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(b-c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(b-a\right)^2}{a^2+b^2+c^2}\\\dfrac{\left(a-b\right)^2}{2c^2+a^2+b^2}+\dfrac{\left(c-b\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(c-a\right)^2}{2b^2+a^2+c^2}\ge\dfrac{\left(c-b\right)^2}{a^2+b^2+c^2}\end{matrix}\right.\)

ta thu được BĐT cần chứng minh tương đương \(\left\{{}\begin{matrix}\left(b-c\right)\left(c-a\right)\ge0\left(3\right)\\\left(c-a\right)\left(a-b\right)\ge0\left(4\right)\end{matrix}\right.\)

Dễ thấy \(\left(a-b\right)\left(b-c\right).\left(b-c\right)\left(c-a\right).\left(c-a\right)\left(a-b\right)=\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2\ge0\)

tích của chúng là 1 số không âm nên có ít nhất 1 số không âm .Chứng tỏ có ít nhất 1 BĐT đúng

Do đó ta có đpcm

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

24 tháng 5 2018

Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)

Thiết lập tương tự và thu lại ta có :

\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)

Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)

Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)

Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)

\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)

\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=1\)

25 tháng 5 2018

Thanks you.!!!hiuhiu