K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

S = 2*4+4*6+6*8+...+46*48+48*50

S6 = 2*4*6+4*6*6+6*8*6+........................+46*48*6+48*50*6

S6=2*4*(6-0)+4*6*(8-2)+6*8*(10-4)+.................................+46*48*(50-44)+48*50*(52-46)

S6 = 2*4*6+4*6*8-2*4*6+6*8*10-4*6*8+..........................................+46*48*50-44*46*48+48*50*52-46*48*50

S6 = 48*50*52=124800

S=124800/6=20800

4 tháng 3 2018

\(S=2\cdot4+4\cdot6+...+48\cdot50\)

\(S=2\left(1\cdot2+2\cdot3+...+24\cdot25\right)\)

\(\Rightarrow3S=2\left(1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+...+24\cdot25\left(26-23\right)\right)\)

\(\Rightarrow3S=2\left(1\cdot2\cdot3-0\cdot1\cdot2+2\cdot3\cdot4-1\cdot2\cdot3+...+24\cdot25\cdot26-23\cdot24\cdot25\right)\)

\(\Rightarrow3S=2\cdot24\cdot25\cdot26\)

\(\Rightarrow S=2\cdot8\cdot25\cdot26=10400\)

\(\Rightarrow6S=10400\cdot6=62400\)

14 tháng 8 2015

E=2.(2+2)+4.(2+4)+6.(6+2)+....+98.(98+2).

E=2.2+2.2+2.4+4.4+...+98.98+2.98

E=2.(2+4+6+...+98)+(2.2+4.4+6.6+...+98.98)

E=2.2450+40425.4

E=4900+161700

E=166600

Dấu chấm bằng dấu nhân.

Bạn T-i-c-k đúng cho mình đi mình giải thích tại sao :(2.2+4.4+…+98.98)=40425.4

S=(2+98)*(4+6)+...+100+100+102

100*10+....+100+100*102
=224400

21 tháng 10 2021

\(B=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{46\cdot48}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{46\cdot48}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{48}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{23}{48}=\dfrac{23}{96}< \dfrac{1}{4}\)

6 tháng 9 2023

\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{40.42}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}.\dfrac{10}{21}\)

\(=\dfrac{5}{21}\)

\(#Wendy.Dang\)

6 tháng 9 2023

\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\)

\(=\dfrac{1}{2}\cdot\left(2\cdot\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{40\cdot42}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{41}{42}\)

\(=\dfrac{41}{84}\)

6 tháng 7 2017

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

6 tháng 7 2017

Ta có:

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{98.100}\)

\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{98.100}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\Rightarrow A=\frac{49}{100}\div2=\frac{49}{200}\)

Vậy giá trị của biểu thức là \(\frac{49}{200}\)