So sánh các p/s sau
a, n / n+3 và n-1 / n+4 (N thuộc N*)
b, n / 2n +1 và 3n + 1/ 6n + 3 N thuộc N
Lâu r mk cx ko lên olm, mà mn giúp mk bài này vs nhoa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
Ta có: n / n + 3 = 1 - 1/n + 3
n - 1 / n + 4 = 1 - 1/ n + 4
Mặt khác : 1 / n + 3 > 1 / n + 4 => 1 - 1 / n + 3 > 1 - n + 4
nên n / n + 3 > n - 1 / n + 4
Vậy ...
b) Ko biết làm
c) n / 2n + 1 và 3n + 1 / 6n + 3
Ta có: n / 2n + 1 = 1 - 1 / 2n +1
3n + 1 / 6n + 3 = 3n + 1 / 2 . 3n + 3 = n + 1 / 2n + 3 = 1 - 1/ 2n + 3
Mặt khác: 1/2n + 1 > 1/2n +3 => 1 - 1/2n+1 > 1- 1/2n + 3
nên n / n +1 < 3n + 1/ 6n +2
Vậy ...
phần b ko biết làm nhưng k cho mink nha !
a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2
= n + 2 / 2n + 5
Mà n + 2 / 2n + 5 < n + 2 / 2n + 1
=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1
Vậy n / 2n + 3 < n + 2 / 2n + 1
b) Ta có : n / 3n + 1 = 2n / 6n + 2
Mà 2n / 6n + 2 < 2n / 6n + 1
Vậy n / 3n + 1 < 2n / 6n + 1
Ta có :
A = n / 2n + 1 = 3n / 3 ( 2n + 1 ) = 3n / 6n + 3
Vì 3n / 6n + 3 < 3n + 1/ 6n + 3 => A < B
Vậy A < B