1/ Tìm x, y, z. Biết
( x + y - z )2 + ( x - y + 6 )2 + ( z + 2 )2 = 324
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
mik đồng ý với cánh diều tuổi thơ mà câu này cực kì đơn giản.
tick cho mik nhé.
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
x2=y3=z4x2=y3=z4
\Leftrightarrow2x4=y3=z4=2x+y−z4+3−4=123=42x4=y3=z4=2x+y−z4+3−4=123=4
\Rightarrowx=8
y=12
z=16
bài 2
x2=y5=z7x2=y5=z7
\Rightarrow2y=5x ;x=2,5y ;zx=3,5zx=3,5 ;2y=5x;z=3,5x
\RightarrowA = x-y+z/x+2y-z=x-2,5x+3,5+5x-3,5x=3,5
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
\(\left(x+y-z\right)^2+\left(x-y+6\right)^2+\left(z+2\right)^2=0\)
Đánh giá: \(\left(x+y-z\right)^2\ge0;\)\(\left(x-y+6\right)^2\ge0;\)\(\left(z+2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x+y-z\right)^2+\left(x-y+6\right)^2+\left(z+2\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+y-z=0\\x-y+6=0\\z+2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=5\\y=-7\\z=-2\end{cases}}\)
Vậy....
\(\hept{\begin{cases}x+y-z=0\\x-y+6=0\\z+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\\z=-2\end{cases}}}\)