Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
\(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x}{10}=\frac{y}{20}\) (*)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)(**)
Từ (*) và (**) \(\Rightarrow\frac{x}{10}=\frac{y}{20}=\frac{z}{24}=k\)\(\Rightarrow x=10k\); \(y=20k\); \(z=24k\)
Ta có : \(x+y+z=486\Rightarrow10k+20k+24k=486\Rightarrow54k=486\Rightarrow k=\frac{486}{54}=9\)
Do đó : \(\frac{x}{10}=9\Rightarrow x=9.10=90\)
\(\frac{y}{20}=9\Rightarrow y=9.20=180\)
\(\frac{z}{24}=9\Rightarrow z=9.24=216\)
Vậy .....
\(\frac{x}{2}\)= \(\frac{y}{4}\); \(\frac{y}{5}\)= \(\frac{z}{6}\) và x+y+z=486
\(\Rightarrow\)\(\frac{x}{10}\)= \(\frac{y}{20}\); \(\frac{y}{20}\)= \(\frac{z}{24}\)
\(\Rightarrow\)\(\frac{x}{10}\)= \(\frac{y}{20}\)= \(\frac{z}{24}\)và x+y+z=486
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}\)= \(\frac{y}{20}\)= \(\frac{z}{24}\)=\(\frac{x+y+Z}{10+20+24}\)= \(\frac{486}{54}\)= 9
Suy ra: \(\frac{x}{10}\)= 9\(\Rightarrow\)x= 9.10=90
\(\frac{y}{20}\)= 9\(\Rightarrow\)y= 20.9= 180
\(\frac{z}{24}\)= 9\(\Rightarrow\)z= 24.9= 216
Vậy x= 90; y=180; z= 216
Câu 3:
<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Câu 4 tương tự.
a) ADTCDTSBN
có: \(\frac{x}{12}=\frac{y}{13}=\frac{z}{15}=\frac{x+y+z}{12+13+15}=\frac{160}{40}=4\)
=> x/12 = 4 => x = 48
...
b) ta có: \(x=\frac{y}{6}=\frac{z}{3}=\frac{2x}{2}=\frac{3y}{18}=\frac{4z}{12}\)
ADTCDTSBN
có: \(\frac{2x}{2}=\frac{3y}{18}=\frac{4z}{12}=\frac{2x-3y+4z}{2-18+12}=\frac{16}{-4}=-4\)
=>...
c) ta có: \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{3}=\frac{2x}{4}=\frac{3y}{-9}=\frac{2z}{8}\)
ADTCTDBN
có: \(\frac{2x}{4}=\frac{3y}{-9}=\frac{2z}{8}=\frac{2x+3y+2z}{4-9+8}=\frac{1}{3}\)
=>...
\(\left(x+y-z\right)^2+\left(x-y+6\right)^2+\left(z+2\right)^2=0\)
Đánh giá: \(\left(x+y-z\right)^2\ge0;\)\(\left(x-y+6\right)^2\ge0;\)\(\left(z+2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x+y-z\right)^2+\left(x-y+6\right)^2+\left(z+2\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+y-z=0\\x-y+6=0\\z+2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=5\\y=-7\\z=-2\end{cases}}\)
Vậy....
\(\hept{\begin{cases}x+y-z=0\\x-y+6=0\\z+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\\z=-2\end{cases}}}\)