Tìm tất cả các số nguyên không âm a;b;c thỏa mãn
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\) và
\(a^3+b^3+c^3+1⋮a+b+c+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Truy cập link để nhận thẻ cào 50k free :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
|x| < 59 ; x thuộc Z
=> x thuộc {-59;-58;-57;..........;57;58;59}
a, tổng của tất cả các số nguyên x là:
-59 + (-58) + (-57) + ....... + 57 + 58 + 59
= (-59 + 59) + (-58 + 58) + (-57 + 57) + ...... + (-1 + 1) + 0
= 0 + 0 + 0+ ..... + 0 + 0
= 0
b, tích của tất cả các số nguyên x là:
-59 . (-58) . (-57) . ...0.... . 57 . 58 . 59
= 0
vậy tích của tất cả các số nguyên x ko âm cx ko dương
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )
=> B≥33√2·xy ·2·yz ·2·zx =33√8=6
( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy và 2 cái kia tương tự vào )
=> Min B=6
Mình nhầm chỗ câu b, sửa lại là :
B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )
Bạn làm tương tự => B≥3√2.