K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

Truy cập link để nhận thẻ cào 50k free :

http://123link.vip/7K2YSHxh

Nhanh không cả hết !

4 tháng 10 2020

Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)

Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)

Mà y là số nguyên không âm nên y = 0

Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy (x, y) = { (0; 0); (1; 0) }

8 tháng 1 2019

Bài 1 :

x2 - x - 2 = x2 - 2x + x - 2

= x( x - 2 ) + ( x - 2 ) = ( x - 2 ) ( x + 1 )

Để x3 + ax + b ⋮ ( x - 2 ) ( x + 1) thì :

x3 + ax + b = ( x - 2 ) ( x + 1 ) . Q

Vì đẳng thức trên đúng với mọi x, do đó :

+) đặt x = 2 ta có :

23 + 2a + b = ( 2 - 2 ) ( 2 + 1 ) . Q

8 + 2a + b = 0

2a + b = -8

b = -8 - 2a (1)

+) đặt x = -1 ta có :

(-1)3 + (-1)a + b = ( -1 - 2 ) ( -1 + 1 ) . Q

-1 - a + b = 0

-a + b = 1 (2)

Thay (1) vào (2) ta có :

-a - 8 - 2a = 1

<=> -3a = 9

<=> a = -3

=> b = 1 + (-3) = -2

Vậy a = -3; b = -2

27 tháng 2 2019

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

9 tháng 9 2020

Xét \(x=0\Rightarrow y^2=-2y\Leftrightarrow\orbr{\begin{cases}y=0\\y=-2\end{cases}}\)

Xét \(x\ne0\Rightarrow x^2\ge1\)(vì \(x\inℤ\))

\(2x^2-2xy+y^2=2\left(x-y\right)\Leftrightarrow x^2+\left(x^2-2xy+y^2\right)-2\left(x-y\right)=0\)

\(\Leftrightarrow x^2+\left(x-y\right)^2-2\left(x-y\right)=0\)

Vì \(x^2\ge1\)nên \(x^2+\left(x-y\right)^2-2\left(x-y\right)\ge\left(x-y\right)^2-2\left(x-y\right)+1=\left(x-y-1\right)^2\ge0\)

Mà đề yêu cầu giải biểu thức bằng 0 nên ta xét điều kiện xảy ra của dấu "=": \(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}}\)

\(\orbr{\begin{cases}x=1,y=0\\x=-1,y=-2\end{cases}}\)

\(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=-1\\y=-2\end{cases}}\end{cases}}}\)Vậy phương trình nhận 4 nghiệm (x;y)=(0;0),(0;-2),(1;0),(-1;-2).

14 tháng 8 2020

a) Đặt x +y = S; xy = P => S; P nguyên 

Ta có: \(x^2+y^2=\left(xy-3\right)^2\Leftrightarrow\left(x+y\right)^2-2xy=\left(xy\right)^2-6xy+9\)

=> \(S^2-2P=P^2-6P+9\)

<=> \(S^2-\left(P-2\right)^2=5\)

<=> \(\left(S-P+2\right)\left(S+P-2\right)=5\)

TH1: \(\hept{\begin{cases}S-P+2=5\\S+P-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=3\\S+P=3\end{cases}\Leftrightarrow\hept{\begin{cases}S=3\\P=0\end{cases}}}\)

khi đó: \(\hept{\begin{cases}x+y=3\\xy=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3;y=0\\x=0;y=3\end{cases}}\)

TH2: \(\hept{\begin{cases}S-P+2=1\\S+P-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-1\\S+P=7\end{cases}\Leftrightarrow\hept{\begin{cases}S=3\\P=4\end{cases}}}\)

khi đó: \(\hept{\begin{cases}x+y=3\\xy=4\end{cases}}\)<=> không tồn tại x; y nguyên 

TH3: \(\hept{\begin{cases}S-P+2=-5\\S+P-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-7\\S+P=1\end{cases}\Leftrightarrow\hept{\begin{cases}S=-3\\P=4\end{cases}}}\)

khi đó: \(\hept{\begin{cases}x+y=-3\\xy=4\end{cases}}\)<=> không tồn tại x; y nguyên 

TH4: \(\hept{\begin{cases}S-P+2=-1\\S+P-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}S-P=-3\\S+P=-3\end{cases}\Leftrightarrow\hept{\begin{cases}S=-3\\P=0\end{cases}}}\)

Khi đó: \(\hept{\begin{cases}x+y=-3\\xy=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3;y=0\\x=0;y=-3\end{cases}}\)

Vậy  có 4 nghiệm nguyên ( 3; 0) ( -3: 0) ( 0; 3) ( 0; -3)

18 tháng 11 2016

Mình viết gọn thôi nhé , tại nhiều câu quá ^^

a/ \(\left(x+1\right)\left(1-y\right)=2\)

b/ \(\left(x+2\right)\left(y-1\right)=13\)

c/ \(\left(x-2\right)\left(y+3\right)=1\)

d/ \(\left(x-1\right)\left(y-1\right)=3\)

e/ \(\left(2x-y\right)\left(x+2y\right)=7\)

Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^

19 tháng 11 2016

vết tn mk ko hiểu tại sao lại phân tích như vậy

còn cách tìm nghiệm thì mk pit