K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

BĐT cần chứng minh tương đương với :

\(\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ac}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\)( luôn đúng )

nguồn  : loga 

3 tháng 6 2020

Bất đẳng thức cần chứng minh tương đương: \(\Sigma\frac{2}{a^2+b^2+2}\le\frac{3}{2}\)

\(\Leftrightarrow3-\Sigma\frac{2}{a^2+b^2+2}\ge\frac{3}{2}\Leftrightarrow\Sigma\left(1-\frac{2}{a^2+b^2+2}\right)\ge\frac{3}{2}\)

\(\Leftrightarrow\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{3}{2}\)(*)

Xét vế trái của (*), ta có: \(\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)(Theo BĐT Bunyakovsky dạng phân thức)

Đến đây, ta cần chỉ ra rằng \(\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{2\left(a^2+b^2+c^2\right)+2\left(\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\right)}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{a^2+b^2+c^2+\Sigma\text{​​}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}{a^2+b^2+c^2+3}\ge\frac{3}{2}\)

\(\Leftrightarrow2\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\left(a^2+b^2+c^2\right)+9\)\(\Leftrightarrow\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(**)

Theo BĐT Cauchy-Schwarz cho 2 bộ số \(\left(a;b\right)\)và \(\left(c;b\right)\), ta có:\(\left(a^2+b^2\right)\left(c^2+b^2\right)\ge\left(ac+b^2\right)^2\) \(\Rightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge ac+b^2\)(1)

Tương tự, ta có: \(\sqrt{\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge ab+c^2\)(2); \(\sqrt{\left(c^2+a^2\right)\left(a^2+b^2\right)}\ge bc+a^2\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge a^2+b^2+c^2+ab+bc+ca\)

\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(Do đó (**) đúng)

Đẳng thức xảy ra khi a = b = c = 1.

9 tháng 11 2023

a,a=12;b=6

b,a=8;b=4

c,a=18;b=18

4 tháng 11 2016

a)  120 chia hết cho a

     300 chia hết cho a

     420 chia hết cho a

=> a \(\in\)ƯC(120,300.420)

Ta có:

120 = 23.3.5

300 = 22.3.52

420 = 22.3.5.7

UCLN(120,300,420) = 22.3.5 = 60

UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}

Vì a > 20 nên a = {30;60}

b) 56 chia hết cho a

    560 chia hết cho a

   5600 chia hết cho a

=>a \(\in\)ƯC(56,560,5600)

Ta có:

56 = 23.7

560 = 24.5.7

5600 = 25.52.7

UCLN(56,560,5600) = 23.7 = 56

UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}

Vì a lớn nhất nên a = 56

16 tháng 12 2016

dễ vãi

 

15 tháng 10 2021

Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó

A = 200*

Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0

NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.

Như vậy, đề sai.

26 tháng 3
Dudijdiddidijdjdjdjdj
26 tháng 3

5 tháng 11 2016

a ,bằng 70          b, bằng 60              c, bảng 35

5 tháng 11 2016

a) Số a là 70

b)Số a là 60

c)Số a là 35