Bài 3 (3,0 điểm). Cho ABC có AB cm AC cm BC cm 9 , 12 , 15 .
a) Chứng minh ABC vuông và so sánh các góc của ABC ;
b) Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng minh DBC cân;
c) Gọi K là trung điểm của cạnh BC. Đường thẳng DK cắt cạnh AC tại M. Tính CM;
d) Từ trung điểm N của đoạn thẳng AC kẻ đường thẳng vuông góc với AC cắt DC tại I. Chứng
minh ba điểm B, M, I thẳng hàng.
Bài 3 (3,0 điểm). Cho ABC có AB cm AC cm BC cm 9 , 12 , 15 .
a) Chứng minh ABC vuông và so sánh các góc của ABC ;
b) Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng minh DBC cân;
c) Gọi K là trung điểm của cạnh BC. Đường thẳng DK cắt cạnh AC tại M. Tính CM;
d) Từ trung điểm N của đoạn thẳng AC kẻ đường thẳng vuông góc với AC cắt DC tại I. Chứng
minh ba điểm B, M, I thẳng hàng.
làm hộ mik ý D với
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔACB vuông tại A
b: Xét ΔCDB có
CA là đường cao
CA là đường trung tuyến
Do đó;ΔCDB cân tại C
c: Xét ΔCAB có
CA là đường trung tuyến
DK là đường trung tuyến
CA cắt DK tại M
Do đó: M là trọng tâm của ΔCBA
Suy ra: CM=2/3CA=2/3x12=8(cm)