K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

7 tháng 11 2019
https://i.imgur.com/z4bn8DU.jpg
7 tháng 11 2019

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)

\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)

Nếu \(a+b+c+d\ne0.\)

\(\Rightarrow c+d=d+a\)

\(\Rightarrow c=a\left(đpcm1\right).\)

Nếu \(a+b+c+d=0\) thì hợp với đề.

\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)

Chúc bạn học tốt!

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)

Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)

24 tháng 10 2021

a: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)

hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

20 tháng 10 2023

Sửa đề: x+y+z=0

\(x^3+y^3+z^3=3xyz\)

=>\(\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

=>\(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)

=>\(\left(x+y+z\right)\left[x^2+2xy+y^2-xz-yz+z^2-3xy\right]=0\)

=>\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

=>\(\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

=>\(\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]=0\)(1)

x<>y<>z

=>\(x-y< >0;y-z< >0;x-z< >0\)

=>\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ne0\left(2\right)\)

Từ (1),(2) suy ra x+y+z=0

20 tháng 10 2023
Để chứng minh C/M: a+b+c=0, ta sẽ sử dụng công thức Newton về tổng hệ số của đa thức. Theo công thức Newton, ta có: (x+y+z)^3 = x^3 + y^3 + z^3 + 3(x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2) + 6xyz Áp dụng công thức này vào phương trình đã cho, ta có: 3(x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2) + 6xyz = 3xyz Simplifying the equation, we get: x^2y + xy^2 + x^2z + xz^2 + y^2z + yz^2 + 2xyz = 0 Từ đây, ta có thể nhận thấy rằng: (x+y+z)(xy+yz+zx) = 0 Vì a, b, c là các số thực và a ≠ b ≠ c, nên ta có thể kết luận rằng: xy + yz + zx = 0 Do đó, ta có: (x+y+z)(xy+yz+zx) = (x+y+z)(0) = 0 Vì vậy, ta có C/M: a+b+c=0.... 
9 tháng 2 2020

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)

20 tháng 6 2017

\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)

\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)

\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)

15 tháng 8 2016

Đặt\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=k\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=k\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=k^{2013}\)(1)

Mặt khác:\(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=k^{2013}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}=k^{2013}\)(2)

Từ (1);(2) ta có: \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(=k^{2013}\right)\)

15 tháng 8 2016

có \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)=>\(\frac{a^{2013}}{c^{2013}}=\frac{\left(a-b\right)^{2013}}{\left(c-d\right)^{2013}}\)

ngược lại cũng có \(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)

=> đpcm :V