K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

Ta viết lại bất đẳng thức cần chứng minh là:

\(\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{b}{\left(a+b\right)\left(c+a\right)}+\frac{c}{\left(c+a\right)\left(a+b\right)}\ge\frac{3}{4}\)

Sử dụng kĩ thuật thêm-bớt trong bất đẳng thức Cô si ta được:

\(\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{a\left(a+c\right)}{8}+\frac{a\left(b+c\right)}{8}\ge\frac{3a}{4}\)

\(\Rightarrow\frac{a}{\left(a+c\right)\left(b+c\right)}+\frac{a^2+ab+2ac}{8}\ge\frac{3a}{4}\)

Áp dụng tương tự ta được:

\(\frac{b}{\left(a+b\right)\left(c+a\right)}+\frac{b^2+bc+2ab}{8}\ge\frac{3b}{4}\)

\(\frac{c}{\left(b+c\right)\left(a+b\right)}+\frac{c^2+ca+2bc}{8}\ge\frac{3c}{4}\)

Gọi vế trái của bất đẳng thức là A khi đó cộng các vế bất đẳng thức trên ta được:

\(A+\frac{a^2+ab+2ac}{8}+\frac{b^2+bc+2ab}{8}+\frac{c^2+ca+2bc}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

Hay: \(A\ge\frac{9}{4}-\frac{\left(a+b+c\right)^2+\left(ab+bc+ca\right)}{8}\)

\(\ge\frac{9}{4}-\frac{\left(a+b+c\right)^2+\frac{\left(a+b+c\right)^2}{a}}{8}=\frac{3}{4}\)

Đến đây bài toán được chứng minh xong.

3 tháng 3 2019

À hai câu này liền nhau

Tính giá trị của biểu thức M=\(\left(\frac{a}{b}\right)^{2016}-\left(\frac{c}{a}\right)^{2017}\)

3 tháng 3 2019

a = b =c =1

(^_^)

29 tháng 9 2020

G/s: a \(\ne\)

không mất tính tổng quát g/s: a < b 

Vì \(a^b=b^c\)=> b > c 

Mà \(b^c=c^a\)=> a > c 

Lại có: \(a^b=c^a\)=> b < a vô lí với giả thiết 

=> a = b 

Tương tự chứng minh được b = c 

=> a = b = c

3 tháng 2 2019

\(\text{Vì }a,b,c\inℕ^∗\Rightarrow\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}\Rightarrow M>\frac{a+b+c}{a+b+c}=1}\)(1)

\(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{a+c}< \frac{c+b}{c+a+b}\end{cases}}\Rightarrow M< \frac{2.\left(a+b+c\right)}{a+b+c}=2\)(2) (chỉ áp dụng cho p/s có tử  bé hơn mẫu)

từ (1) và (2) => 1<M<2 => M không phải là STN

4 tháng 2 2019

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

Ta có

\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c+a}< \frac{b}{b+c}< \frac{b+a}{b+c+a}\)

\(\frac{ c}{c+a+b}< \frac{c}{c+a}< \frac{c+b}{c+a+b}\)

\(\Rightarrow1< M< 2\Rightarrow\)M không phải là số tự nhiên

1 tháng 7 2019

Với số tự nhiên a bất kì thì a^2 chia 3 dư 0,1 ( Xét a=3k,a=3k+1,a=3k+2 )

Áp dụng :

VT chia 3 dư 0,1,2 VP chia 3 dư 0,1.

Do đó muốn có nghiệm thì a,b không được cùng số dư là 1 khi chia cho 3

=>Tồn tại một số chia hết cho 3.

Tương tự: a^2 chia 4 dư 0,1(xét a=4k,a=4k+1,a=4k+2,a=4k+3)

=>Tồn tại một số chia hết cho 4

a^2 chia 5 dư 0,1,4(xét a=5k,...)

VT chia 5 dư 0,1,2,3,4 mà VP chia 5 dư 0,1,4

Xảy ra khi tồn tại ít nhất một số bên vế phải chia hết cho 5

=>abc chia hết cho 3x4x5=60 (đpcm)

Giả thiết a, b, c nguyên; a² = b²+c² 

* ta biết số chính phương: n² khi chia 3 dư 0 hoặc dư 1 
từ a² = b²+c², thấy b² và c² khi chia 3 không thể cùng dư 1 
vì nếu chúng cùng dư 1 thì a² = b²+c² chia 3 dư 2 vô lí 
=> hoặc b², hoặc c² có ít nhất 1 số chia 3 dư 0 => b hoặc c chia hết cho 3 
=> abc chia hết cho 3 (1) 

* ta biết số n² chia 4 dư 0 hoặc dư 1 
nếu n chẳn => n² chia 4 dư 0 
nếu n lẻ: n = 2k+1 => (2k+1)² = 4k²+4k+1 chia 4 dư 1 

từ a² = b²+c² => b² và c² khi chia 4 không thể cùng dư 1 
vì nếu b² và c² chia 4 đều dư 1 => b²+c² = a² chia 4 dư 2 trái lí luận trên 
=> hoặc b² hoặc c² (hoặc cả 2) chia 4 dư 0, chẳn hạn b² chia 4 dư 0 
+ nếu c² chia 4 dư 0 => b và c đều chia hết cho 2 => abc chia hết cho 4 
+ nếu c² chia 4 dư 1 => a² = b²+c² chia 4 dư 1 => a, c là 2 số lẻ 
a = 2n+1 ; c = 2m+1; có: b² = a²-c² = (a-c)(a+c) = (2n-2m)(2n+2m+2) 
=> b² = 4(n-m)(n+m+1) (**) 
ta lại thấy nếu m, n cùng chẳn hoặc cùng lẻ => n-m chẳn 
nếu m, n có 1 chẳn, 1 lẻ => m+n+1 chẳn 
=> (m-n)(m+n+1) chia hết cho 2 => b² = 4(m-n)(m+n+1) chia hết cho 8 
=> b chia hết cho 4 => abc chia hết cho 4 
Tóm lại abc luôn chia hết cho 4 (2) 

* lập luận tương tự thì thấy số n² chia cho 5 chỉ có thể dư 0, 1, 4 
+ b² và c² chia 5 không thể cùng dư 1 hoặc 4 
vì nếu cùng dư 1 => b²+c² = a² chia 5 dư 2 
nếu cùng dư là 4 thì b²+c² = a² chia 5 dư 3 
đều vô lí do a² chia 5 chỉ có thể dư 0, 1 hoặc 4 
+ b² chia 5 dư 1 và c² chia 5 dư 4 (hoặc ngược lại) 
=> b²+c² = a² chia 5 dư 0 => a chia hết cho 5 (do 5 nguyên tố) 
+ nếu b² hoặc c² chia 5 dư 0 => b (hoặc c ) chia hết cho 5 
Tóm lại vẫn có abc chia hết cho 5 (3) 

Từ (1), (2), (3) => abc chia hết cho 3, 4, 5 
=> abc chia hết cho [3,4,5] = 60 

19 tháng 2 2019

abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c thuộc N*

19 tháng 2 2019

Giả sử : Cả 3 số a,b,c đều âm , suy ra abc < 0 ( trái gt )

=> Có ít nhất một số dương trong 3 số a,b,c

Do a,b,c bình đẳng, không mất tính tổng quát :

Giả sử : \(a>0\), mà \(abc>0,\) suy ra \(bc>0\)

\(TH1:b< 0;c< 0\), suy ra : \(b+c< 0\)

Mà : \(a+b+c>0\left(gt\right)\) \(\Rightarrow b+c>-a\)

Do : \(b+c< 0\), suy ra : \(\left(b+c\right)^2< -a\left(b+c\right)\)

\(\Rightarrow b^2+2bc+c^2< -ab-ac\)

\(\Rightarrow ab+ac+bc< -b^2-2bc-c^2+bc\)

\(\Rightarrow ab+bc+ac< -b^2-bc-c^2=-\left(b^2+bc+c^2\right)\)

Do : \(b^2+c^2\ge0;bc>0\)

\(\Rightarrow b^2+bc+c^2>0\)

\(\Rightarrow-\left(b^2+bc+c^2\right)< 0\)

Mà : \(ab+bc+ac< -\left(b^2+bc+c^2\right)\)

\(\Rightarrow ab+bc+ac< -\left(b^2+bc+c^2\right)< 0\)

\(\Rightarrow ab+bc+ac< 0\)( trái giả thiết : ab + bc + ac > 0 )

Suy ra : b <0, c< 0 ( vô lý )

\(\Rightarrow b,c>0\Rightarrow a,b,c>0\Rightarrow a,b,c\inℕ^∗\left(đpcm\right)\)

3 tháng 10 2021

Giả sử \(\hept{\begin{cases}a⋮p\\b⋮̸p\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮p\\b^2⋮̸p\end{cases}}\)

=> \(\hept{\begin{cases}a^2:p\text{ dư }4k;4k+1;4k+2\\b^2:p\text{ dư }4k;4k+1;4k+2\end{cases}}\)

Chọn ngẫu nhiên các cặp a2 ; b2 bất kì nhận thấy 

 a2 + b2 \(⋮̸\)p (trái với giả thiết) 

=> Điều giả sử là sai => đpcm 

14 tháng 6 2019

Mình lộn chữ "c" sửa thành chữ "n" nha

ta có:a<b
1-a+n/b+n =(b+n-a-n)/a+n=>(b-a)/a+n
Vì (b-a)/a < (b-a)/a+n nên a/b ( b>0) > a+n/b+n
Làm tương tự Vs a>b nha!