Tìm các chữ số a,,b,c biết;
a.] abc. 5= dad
b] abc+ba= dcca
Trả lời giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 10(a+b) +a +b =176
<=> 11(a+b) =176
<=> a + b =16
=> a=7 và b=9 hoặc a=9 và b=7 (vì a khác b)
Vì ac và cb là số có hai chữ số => a=1
=> 10 +c +10c = 100 + c
=> 10c = 90
=>c=9
Vậy số cần tìm là 109
Bài 1:
Giải:
Ta có:
\(\overline{ab}+\overline{bc}=176\)
\(\Rightarrow10a+b+10b+a=176\)
\(\Rightarrow11a+11b=176\)
\(\Rightarrow11\left(a+b\right)=176\)
\(\Rightarrow a+b=16\)
Vì a, b là chữ số nên ta có bảng sau:
a | 7 | 9 | 8 |
b | 9 | 7 | 8 |
Vậy các cặp số \(\left(a;b\right)\) là: \(\left(7;9\right);\left(9;7\right);\left(8;8\right)\)
Giả sử 0<a<b<c. Theo đề bài
\(\overline{abc}+\overline{acb}=200a+11b+11c=499\)
\(\Rightarrow11\left(a+b+c\right)=499-189a=495+4-187a-2a\)
\(\Rightarrow11\left(a+b+c\right)=45.11-17.11.a+\left(4-2a\right)\)
\(11\left(a+b+c\right)⋮11\Rightarrow145.11+17.11.a+4-2a⋮11\)
\(\Rightarrow4-2a⋮11\Rightarrow a=2\) Thay a=2 vào biểu thức
\(11\left(a+b+c\right)=499-189a\Rightarrow a+b+c=11\)
Gọi số A là ab, thì số B=a+b.
TH1: Nếu B là số có 1 chữ số thì C=B=a+b.
=>ab=(a+b)+(a+b)+44
=>ax8=b+44
=>b chia 8 dư 4
=>b=4
=>a=6
Loại vì a+b là số có 1cs.
TH2: nếu B là số có 2 cs thì 9<B<20; C là tổng các cs của B nên C=B-9.
=>ab=(a+b)+(a+b-9)+44
=>ax8=b+35
=>b chia 8 dư 5
=>b=5
=>a=5
Đáp số 55