K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được

\(AC^2=AH^2+CH^2\)

Ta có: \(AB^2+AC^2=BH^2+CH^2+AH^2+AH^2=BH^2+CH^2+2\cdot AH^2\)

b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

Áp dụng định lí pytago vào ΔACH vuông tại H, ta được

\(AC^2=AH^2+HC^2\)

Ta có: \(AB^2-AC^2=AH^2+BH^2-AH^2-CH^2=BH^2-CH^2\)(1)

Áp dụng định lí pytago vào ΔEHB vuông tại H, ta được

\(EB^2=EH^2+HB^2\)

Áp dụng định lí pytago vào ΔEHC vuông tại H, ta được

\(EC^2=EH^2+HC^2\)

Ta có: \(EB^2-EC^2=EH^2+BH^2-EH^2-CH^2=BH^2-CH^2\)(2)

Từ (1) và (2) suy ra \(AB^2-AC^2=EB^2-EC^2\)(đpcm)

4 tháng 2 2020

a)

+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:

\(AB^2=AH^2+BH^2\) (định lí Py - ta - go) (1).

+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:

\(AC^2=AH^2+CH^2\) (định lí Py - ta - go) (2).

Từ (1) và (2) \(\Rightarrow AB^2+AC^2=\left(AH^2+AH^2\right)+\left(BH^2+CH^2\right)\)

\(\Rightarrow AB^2+AC^2=AH^2+AH^2+BH^2+CH^2\)

\(\Rightarrow AB^2+AC^2=2AH^2+BH^2+CH^2\)

Hay \(AB^2+AC^2=BH^2+CH^2+2AH^2\left(đpcm\right).\)

Chúc bạn học tốt!

13 tháng 9 2018

1) ta có \(\dfrac{HB}{HC}=\dfrac{1}{4}\Leftrightarrow HC=4HB\)

*Xét tam giác ABC có AH vuông vs BC

=> \(AH^2=HC.HB\) (hệ thức trong tam giác vuông)

<=> \(14^2=4HB.HB\)

<=> \(196=4HB^2\)

<=> \(HB=7\left(cm\right)\)

=> HC= 4.7 =28 (cm)

* BC=HC+HB =28+7=35 (cm)

* Xét tam giác ABC có AH vuông vs BC

\(AB^2=BC.HB\) (HỆ THỨC TRONG TAM GIÁC VUÔNG)

<=> \(AB^2=35.7\)

<=>\(AB^2=245\)

<=> AB=15,65(cm)

\(AC^2=BC.HC\) (hệ thức trong tam giác vuông )

<=> \(AC^2=35.28\)

<=>AC= 31,3(cm)

* Chu vi tam giác ABC là

AC+AB+BC=31.3+15,65+35=81,85(cm)

Vậy chu vi tam giác ABC là 81,85 cm

13 tháng 9 2018

kết quả phải là 81,95 chứ bạn

13 tháng 9 2018

Bài 2

Giải

đề thiếu

Bài 1:

HB/HC=1/4 nên HC=4HB

Ta có: \(AH^2=HB\cdot HC\)

=>\(4HB^2=196\)

=>HB=7(cm)

=>HC=28cm

BC=7+28=35cm

\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)

\(C=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35\left(cm\right)\)

16 tháng 4 2021

Ý cuối nhầm không thế ạ?undefined

a) Xét ΔAHB vuông tại H và ΔADH vuông tại D có 

\(\widehat{DAH}\) chung

Do đó: ΔAHB\(\sim\)ΔADH(g-g)

 

22 tháng 3 2018

a) Xét  \(\Delta CAF\) và    \(\Delta BAE\) có:

   \(\widehat{CFA}=\widehat{BEA}=90^0\)

   \(\widehat{BAC}:\) chung

suy ra:   \(\Delta CAF~\Delta BAE\)

\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)\(\Rightarrow\) \(AE.AC=AF.AB\)  (ĐPCM)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

        \(\frac{AE}{AB}=\frac{AF}{AC}\)  

       \(\widehat{BAC}\)  CHUNG

suy ra:   \(\Delta AEF~\Delta ABC\)

15 tháng 10 2021

mai mình giúp nha

15 tháng 10 2021

a, Xét tg ABH vuông tại H có đg cao HE

\(AE\cdot AB=AH^2\left(1\right)\)

Xét tg ACH vuông tại H có đg cao HF

\(AF\cdot AC=AH^2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AE\cdot AB=AF\cdot AC\)

b, Xét tg AEF và tg ACB có

\(AE\cdot AB=AF\cdot AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\\ \widehat{A}.chung\)

Do đó \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)