K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

31 tháng 1 2018

Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.

Kẻ AH vuông góc BC tại H. 

A B C H

Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.

Vậy thì \(BH=HC=1,5cm\)

Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\)

\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)

Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\)   (1)

A B C M I J K

Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)

\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\)   (cm2)     (2)

Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\) 

20 tháng 4 2016

)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC