K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

Câu hỏi của Khánh Đoàn Quốc - Toán lớp 9 - Học toán với OnlineMath

1 tháng 9 2017

em thấy những bn tài năng đều rời xa h24 vì đầu bài thường hay viết sai

mik ko bít

I don't now

................................

.............

20 tháng 6 2019

A B C H I K M

a, Áp dụng định lí Pytago vào câc tam giác vuông ta được

\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)

                                       \(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)

                                         \(=AI^2+BK^2+CH^2\)

b, Đặt \(P=AK^2+BH^2+CI^2\)

\(\Rightarrow2P=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)

             \(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)

             \(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)

Ta có bđt sau \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)(tự chứng minh)

Áp dụng ta được \(2P\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)

                                   \(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)

\(\Rightarrow P\ge\frac{AB^2+BC^2+CA^2}{4}\)không đổi

Dấu "=" xảy ra <=> M là giao điểm 3 đường trung trực của tam giác ABC

23 tháng 9 2018

https://diendantoanhoc.net/topic/88167-tim-v%E1%BB%8B-tri-c%E1%BB%A7a-i-d%E1%BB%83-al2bh2ck2-nh%E1%BB%8F-nh%E1%BA%A5t/

4 tháng 9 2017

b1:

Bạn cũng có thể gộp chung thế này: 
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >= 
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 = 
AH^2/2 + (M'H - M'A)^2/2 
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và 
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH. 
=> M trùng với M' và MA = M'A = M'H = MH 
=> M nằm ở trung điểm AH