K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

mà I là giao điểm của AC và BD

nên I là trung điểm chung của AC và BD

Suy ra: IB=ID

mà \(IM=\dfrac{ID}{2}\)

và \(IN=\dfrac{IB}{2}\)

nên IM=IN

Xét tứ giác AMCN có 

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo MN

Do đó: AMCN là hình bình hành

Suy ra: AM//CN

21 tháng 11 2021

Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)

21 tháng 11 2021

viết code hả bạn??? đọc lòi mắt

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.a, Chứng minh tứ giác AECF là hình bình hành.b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.c, Chứng minh tứ giác CIDB là hình thang cân.Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.

a, Chứng minh tứ giác AECF là hình bình hành.

b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.

c, Chứng minh tứ giác CIDB là hình thang cân.

Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại MN. Chứng minh rằng:

a) Tứ giác AKCI là hình bình hành.

b) DM = MN = NB.

c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.  

Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.

a, Tứ giác AEDF là hình gì? Vì sao?

b, Chứng minh: A đối xứng với C qua F.

c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.

0
15 tháng 10 2023

Chứng minh k,o, i thẳng hàng:

ABCD là HBH 

=> BC và AC cắt nhau tại trung điểm của mỗi đường

Mà: O là giao điểm của CB và AC

=> O là trung điểm của AC

Tứ giác AKCI có: AK = IC (GT); AK // IC (ABCD là HBH)

=> AKCI là HCH

=> AC và IK cắt nhau tại trung điểm của mỗi đường

Mà: O là trung điểm của AC

=> O là trung điểm của IK

=> O,I,K thẳng hàng

29 tháng 12 2022

\(3\overrightarrow{AP}-2\overrightarrow{AC}=\overrightarrow{0}\)

\(VT=3\left(\overrightarrow{AD}+\overrightarrow{DP}\right)-2\left(\overrightarrow{AD}+\overrightarrow{DC}\right)\)

\(=3\overrightarrow{AD}+3\overrightarrow{DP}-2\overrightarrow{AD}-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\overrightarrow{DP}-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\left(\overrightarrow{DC}+\overrightarrow{CP}\right)-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\overrightarrow{DC}+3\overrightarrow{CP}-2\overrightarrow{DC}\)

\(=\widehat{AD}+\overrightarrow{DC}+3.\dfrac{2}{3}\overrightarrow{CO}\)

\(=\overrightarrow{AD}+\overrightarrow{DC}+2.\dfrac{1}{2}\overrightarrow{CA}\)

\(=\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CA}\)

\(=\overrightarrow{AC}+\overrightarrow{CA}\)

\(=\overrightarrow{AA}=\overrightarrow{0}=VP\) (điều phải chứng minh)

1 tháng 9 2023

b) Vì BI vuông góc với AC tại I, nên I thuộc AC.

    Vì DK vuông góc với AC tại K, nên K thuộc AC.

    Vì O là giao điểm của AC và BD nên O thuộc AC.

    Suy ra I, O, K là các điểm thuộc AC; từ đó ba điểm I, O, K thẳng hàng

20 tháng 5 2017

Theo tính chất hình bình hành ta có: I là trung điểm của AC và BD.

Suy ra:

Bài tập: Hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

Xét tam giác AID có:  A I 2 + I D 2 = A D 2   ( 3 2 + 4 2 = 5 2 = 25 )

Suy ra: tam giác AID là tam giác vuông: AI ⊥ DI hay AC ⊥ BD

Hình bình hành ABCD có 2 đường chéo AC và BD vuông góc với nhau nên là hình thoi.

Suy ra: AB = BC = CD = DA = 5cm

Chọn đáp án B

HQ
Hà Quang Minh
Giáo viên
3 tháng 10 2023

IA = IC và IB = ID => Điểm I là trung điểm của hai đường chéo AC và BD.

8 tháng 8 2021

Do E là điểm bất kì trên AB, mà E đối xứng với F qua O => F nằm trên DC⇒ D,F,C thẳng hàng