K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2015

 

a/

+ Xét tam giác ABC có

^A = 180 -B - C =70 <=> 35 = 90 - B/2 -C/2 <=> 35 + 90 = 90 + 90 - B/2 - C/2 <=> 125 = 180 - B/2 - C/2

+ Xét tam giác BIC

BIC = 180 - IBC - ICB = 180 - B/2 - C/2 => BIC = 125

b/ Kéo dài BC về phía c tạo thành tia Bx theo đề bài BI kéo dài cắt tia phân giác của góc ACx tại K ta có

C + ACx = 180 => ICA + ACK = C/2 + ACx/2 = ICK = 180/2 = 90

Xét tam giác ICK có BKC = 180 - KIC - ICK

Mà KIC = 180 - BIC = 180 - 125 = 55

=> BCK = 180 - 55 - 90 = 35

27 tháng 10 2015

ai bit giup mình với nha thanks

Bạn bổ sung đề đi bạn: Số đo của góc B và góc C là bao nhiêu???

24 tháng 6 2021

ko có chỉ có A thôi

 

29 tháng 7 2019

http://pitago.vn/question/cho-tam-giac-abc-tia-phan-giac-cua-goc-b-cat-tia-phan-giac-49658.html

a) Xét ∆ABC ta có : 

ABC + ACB + BAC = 180° 

=> ABC + ACB = \(180°\:-\:a\)

=> ABC + ACB = 110° 

Vì BI là phân giác ABC 

=> ABI = CBI 

Vì CI là phân giác ACB

=> ACI = BCI 

=> IBC + ICB  = B+C/2

=> IBC + ICB = \(\frac{110°}{2}\)= 55° 

Xét ∆BIC ta có : 

BIC + IBC + ICB = 180° 

=> IBC = 180° - 55° 

=> IBC = 125°

Ta có :

Góc ngoài tại  B = 180° - ABC 

Góc ngoài tại C = 180° - ACB 

Mà ABC  + ACB = 110° 

=> Góc ngoài B + góc ngoài C = 70° 

Vì BK là phân giác góc ngoài B 

CK là phân giác góc ngoài C 

=> CBK + BCK = \(\frac{70°}{2}=35°\)

Xét ∆KCB ta có : 

BKC + CBK + BCK = 180° 

=> BKC = 180° - 35° = 145°

12 tháng 5 2022

A B C J K H I

a/ Xét tg BIC có

\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\dfrac{\widehat{B}}{2}-\dfrac{\widehat{C}}{2}=\)

\(=180^o-\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=180^o-\left[\dfrac{180^o-\widehat{A}}{2}\right]=90^o+\dfrac{\widehat{A}}{2}\left(dpcm\right)\)

b/ Để c/m câu này ta chứng minh bài toán phụ: " Hai đường phân giác ngoài của 2 góc với đường phân giác trong của góc còn lại đồng quy"

A B C J D E F

Có hai đường phân giác của các góc ngoài của góc B và góc C cắt nhau tại J.

Từ J dựng các đường vuông góc với AB; AC; BC cắt 3 cạnh trên lần lượt tại D; E; F 

Vì J thuộc đường phân giác của \(\widehat{DBC}\) nên JD=JF

Vì J thuộc đường phân giác của \(\widehat{ECB}\) nên JE=JF

(Mọi điểm thuộc đường phân giác của một góc thì cách đều hai cạnh của góc)

=> JD=JE

Xét tg vuông ADJ và tg vuông AEJ có

ẠJ chung; JD=JE (cmt) => tg ADJ = tg AEJ (hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{DAJ}=\widehat{EAJ}\) => Ạ là phân giác của góc \(\widehat{BAC}\)

Áp dụng vào bài toán:

Nối AJ => AJ là phân giác của \(\widehat{BAC}\) => AJ phải đi qua I (Trong tg 3 đường phân giác trong đồng quy) => A; I; J thẳng hàng

c/ Vì J; H; K bình đẳng nên B; I; K thẳng hàng và C; I; H thẳng hàng

=> AJ; BK; CH đồng quy tại I

 

 

17 tháng 3 2018