K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a ) Xét \(\Delta ABD\)và \(\Delta ACE\) có : \(BD=CE\left(gt\right);\hept{\begin{cases}\widehat{B}=\widehat{C}\\AB=AC\end{cases}\left(gt\right)}\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(cgc\right)\)

Xét \(\Delta BKE\)và \(\Delta CHD\) có : \(\widehat{B}=\widehat{C}\left(gt\right);\widehat{BKE}=\widehat{CHD}=90^0\left(gt\right);BE=DC\left(=BD+DE=EC+DE\right)\)

\(\Rightarrow\Delta BKE=\Delta CHD\)(CH-GN) \(\Rightarrow DH=EK\)

b) Theo a  \(\Delta BKE\)\(\Delta CHD\) \(\Rightarrow\widehat{KEB}=\widehat{HDC}\Rightarrow\Delta ODE\) cân tại O

c ) Có tam giác ODE cân tại O \(\Rightarrow OD=OE\)

\(DH=OD+OH;EK=OE+OK\) Mà HD = KE (cmt) ; OD = OE (cmt)=> OK = OH 

=> O nằm trên đường chung trực của HK

 \(\Delta BKE\)\(\Delta CHD\)  theo a nên BK = HC ; Mà AB = AC (gt) => AK = AH => A nằm trên đường chung trực của HK

=> AO là đường trung trực của tam giác cân AHK => AO là đừng phân giác của \(\widehat{BAC}\)

27 tháng 1 2019

hình vẽ và GT KL

26 tháng 3 2019

a,xét tam giác ABD và tam giác ACE có:

              AB=AC(gt)

   vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)

              BD=CE(gt)

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)

b,xét 2 tam giác vuông ADH và AEK có:

                AD=AE(theo câu a)

                \(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)

\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)

\(\Rightarrow\)DH=EK

c,xét tam giác AHO và tam giác AKO có:

              AH=AK(theo câu b)

              AO cạnh chung

\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)

\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)

\(\Rightarrow\)AO là phận giác của góc BAC

d,câu này dễ nên bn có thể tự làm tiếp nhé

             

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

18 tháng 11 2017

Hình vẽ:

A B C E D O

Giải:

a) Xét \(\Delta ABD\)\(\Delta ACE\), có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{BAC}\) chung

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)

b) Vì \(\Delta ABD=\Delta ACE\) (câu a)

\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)

c) Ta có: \(AB=AC\left(gt\right)\)

\(AE=AD\left(\Delta ABD=\Delta ACE\right)\)

Lấy vế trừ vế, ta được:

\(\Leftrightarrow AB-AE=AC-AD\)

\(\Leftrightarrow BE=CD\)

Xét \(\Delta OEB\)\(\Delta ODC\), ta có:

\(BE=CD\) (Chứng minh trên)

\(\widehat{OEB}=\widehat{ODC}=90^0\left(gt\right)\)

\(\widehat{EBO}=\widehat{DCO}\) (\(\Delta ABD=\Delta ACE\))

\(\Rightarrow\Delta OEB=\Delta ODC\) (cạnh góc vuông _ góc nhọn kề)

d) Có BD và CE là đường cao của tam giác ABC

Mà BD cắt CE tại O

=> O là trực tâm của tam giác ABC

=> AO là đường cao thứ ba của tam giác ABC

Mà tam giác ABC là tam giác cân tại A (AB = AC)

=> AO đồng thời là tia phân giác của \(\widehat{BAC}\).

27 tháng 3 2019

P/s : Hình bạn tự vẽ giúp mình nha. Cảm ơn bạn nhiều !

a) Xét 🔺ABD và 🔺ACE có :

AB = AC ( 🔺ABC cân tại A )

^ABC = ^ACB (🔺ABC cân tại A )

BD = CE ( gt )

Suy ra 🔺ABD = 🔺ACE ( c.g.c )

b) Xét 🔺HBD và 🔺KCE có :

^BHD = ^CKE = 90 độ

BD = BE ( gt )

^ABC = ^ACB ( 🔺ABC cân tại A )

Suy ra 🔺HBD = 🔺KCE ( ch - gn )

=> DH = EK ( 2 cạnh tương ứng )

c) Xét 🔺ABM và 🔺ACM có :

AB = AC ( 🔺ABC cân tại A )

MB = MC ( vì M là trung điểm của BC )

AM là cạnh chung

Suy ra 🔺ABM = 🔺ACM ( c.c.c )

=> ^BAM = ^CAM ( 2 góc tương ứng )

hay AM là tia phân giác của ^BAC (1)

mà M nằm giữa A và O ( hình vẽ )

=> AO cũng là tia phân giác của ^BAC (2)

d) Từ (1) và (2) => A, M, O thẳng hàng