Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét tam giác ABD và tam giác ACE có:
AB=AC(gt)
vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)
BD=CE(gt)
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)
b,xét 2 tam giác vuông ADH và AEK có:
AD=AE(theo câu a)
\(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)
\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)
\(\Rightarrow\)DH=EK
c,xét tam giác AHO và tam giác AKO có:
AH=AK(theo câu b)
AO cạnh chung
\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)
\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)
\(\Rightarrow\)AO là phận giác của góc BAC
d,câu này dễ nên bn có thể tự làm tiếp nhé
Ta có hình vẽ:
a/ Xét tam giác ABD và tam giác ACE có:
AB = AC (t/g ABC cân)
góc B = góc C (t/g ABC cân)
BD = CE (GT)
=> tam giác ABD = tam giác ACE
b/ Xét hai tam giác vuông ADH và AEK có:
góc HAD = góc KAE (t/g ABD = t/g ACE)
AD = AE (t/g ABD = t/g ACE)
=> tam giác ADH = tam giác AEK
=> DH = EK.
c/ Xét hai tam giác vuông AHO và AKO có:
AO: cạnh chung
AH = AK (t/g ADH = t/g AEK)
=> tam giác AHO = tam giác AKO
=> góc HAO = góc KAO
hay góc BAO = góc CAO
Vậy AO là pg góc BAC.
d/ Xét tam giác ABM và tam giác ACM có:
AB = AC (t/g ABC cân)
AM: cạnh chung
BM = MC (M là trung điểm BC)
=> tam giác ABM = tam giác ACM
=> góc BAM = góc CAM
Vậy AM là pg góc BAC
Ta có: AO là pg góc BAC
và AM là pg góc BAC
=> AO trùng AM
hay A;M;O thẳng hàng.
---> đpcm.
P/s : mk nhầm kí hiệu chỗ hình vẽ: thay vì AB = AC nhưng mk đánh kí hiệu là AD = AE nên khi làm bài bạn sửa lại nhé.
Cám ơn bạn nhưng mình gửi câu hỏi không phải để làm bài mà để được giao lưu với mọi người.^_^Bạn nghĩ sai về acc này rồi.
a, Ta có : \(\Delta\)ABC cân tại A (gt)
\(\Rightarrow\)Góc B = góc \(C_1\)
Mà góc \(C_1=C_2\)(đối đỉnh)
\(\Rightarrow\)Góc B = góc \(C_2\)
Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :
BD=CE (gt)
Góc B = góc C\(_2\)(cmt)
\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)
\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)
Vậy...
b, Ta có : DH và EK cùng vuông góc vs BC (gt)
\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)
\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )
Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :
DH=CE (\(\Delta BEH=\Delta CEK\))
Góc HDI = góc IEC (cmt)
\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)
\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )
Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )
\(\Rightarrow\)I là trung điểm của BC
Vậy...
Chúc bn hok tốt
a) Xét ∆ADB và ∆AEC có:
AB=AC (gt)
góc ABD= góc ACE (gt)
BD=CE(gt)
=>∆ADB=∆AEC(c.g.c0
=>AD=AC (2 cạnh tương ứng)
=>∆ADE là ∆cân tại A
b)Xét ∆BHD và ∆CKE có:
góc BHD=góc EHC=90
BD=CE(gt)
góc B=góc C(gt)
=>∆BHD=∆CKE(cạnh huyền góc nhọn)
=>DH=EK(2 cạnh tương ứng)(đpcm)
c)∆BHD=∆CKE(cmt) =>góc HDB =góc KEC (2cạnh tương ứng)
mà ∠HDB=∠EDO( đối đỉnh), ∠KEC=∠DEO(đối đỉnh)
=>∠EDO=∠DEO =>∆ODE cân tại O (đpcm)
P/s : Hình bạn tự vẽ giúp mình nha. Cảm ơn bạn nhiều !
a) Xét 🔺ABD và 🔺ACE có :
AB = AC ( 🔺ABC cân tại A )
^ABC = ^ACB (🔺ABC cân tại A )
BD = CE ( gt )
Suy ra 🔺ABD = 🔺ACE ( c.g.c )
b) Xét 🔺HBD và 🔺KCE có :
^BHD = ^CKE = 90 độ
BD = BE ( gt )
^ABC = ^ACB ( 🔺ABC cân tại A )
Suy ra 🔺HBD = 🔺KCE ( ch - gn )
=> DH = EK ( 2 cạnh tương ứng )
c) Xét 🔺ABM và 🔺ACM có :
AB = AC ( 🔺ABC cân tại A )
MB = MC ( vì M là trung điểm của BC )
AM là cạnh chung
Suy ra 🔺ABM = 🔺ACM ( c.c.c )
=> ^BAM = ^CAM ( 2 góc tương ứng )
hay AM là tia phân giác của ^BAC (1)
mà M nằm giữa A và O ( hình vẽ )
=> AO cũng là tia phân giác của ^BAC (2)
d) Từ (1) và (2) => A, M, O thẳng hàng