K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEHD vuông tại H và ΔEDF vuông tại D có

góc E chung

=>ΔEHD đồng dạng với ΔEDF

Xét ΔFHD vuông tại H và ΔFDE vuông tại D có

góc F chung

=>ΔFHD đồng dạng với ΔFDE

Xét ΔHDE vuông tại H và ΔHFD vuông tại H có

góc HDE=góc HFD

=>ΔHDE đồng dạng với ΔHFD

b: EF=căn 6^2+8^2=10cm

DH=6*8/10=4,8cm

HE=6^2/10=3,6cm

HF=10-3,6=6,4cm

29 tháng 10 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2=EF^2\)

=>\(EF^2=32^2+24^2=1600\)

=>EF=40(cm)

Xét ΔDEF vuông tại D có DH là đường cao

nên \(DH\cdot FE=DE\cdot DF\)

=>\(DH\cdot40=32\cdot24=768\)

=>DH=768/40=19,2(cm)

Xét ΔDFE vuông tại D có DH là đường cao

nên \(EH\cdot EF=DE^2\)

=>\(EH\cdot40=32^2\)

=>\(EH=\dfrac{1024}{40}=25,6\left(cm\right)\)

b: Xét ΔDHE vuông tại H có HA là đường cao

nên \(DA\cdot DE=DH^2\left(1\right)\)

Xét ΔDHF vuông tại H có HB là đường cao

nên \(DB\cdot DF=DH^2\left(2\right)\)

Từ (1) và (2) suy ra \(DA\cdot DE=DB\cdot DF\)

=>\(\dfrac{DA}{DF}=\dfrac{DB}{DE}\)

Xét ΔDAB vuông tại A và ΔDFE vuông tại D có

\(\dfrac{DA}{DF}=\dfrac{DB}{DE}\)

Do đó: ΔDAB đồng dạng với ΔDFE

c: Xét tứ giác DAHB có

\(\widehat{DAH}=\widehat{DBH}=\widehat{ADB}=90^0\)

=>DAHB là hình chữ nhật

=>DH=AB

\(DH^2\cdot sin^2E+DH^2\cdot sin^2F\)

\(=AB^2\cdot sin^2E+AB^2\cdot sin^2F\)

\(=AB^2\left(sin^2E+sin^2F\right)=AB^2\cdot\left(sin^2E+cos^2E\right)=AB^2\)

4 tháng 3 2021

Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)

=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)

=> \(DF=\sqrt{144}=12\left(cm\right)\)

Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh

Xét tam giác ABC và tam giác DEF ta có :

\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)

\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)

\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)

=> Tam giác ABC đồng dạng tam giác DEF

Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được

4 tháng 3 2021

ko b oi

a) Xét ΔBDE vuông tại D và ΔDCE vuông tại C có 

\(\widehat{DEC}\) chung

Do đó: ΔBDE\(\sim\)ΔDCE(g-g)

b) Xét ΔBCD vuông tại C và ΔDHC vuông tại H có

\(\widehat{BDC}=\widehat{DCH}\)(hai góc so le trong, BD//CH)

Do đó: ΔBCD\(\sim\)ΔDHC(g-g)

Suy ra: \(\dfrac{DC}{CH}=\dfrac{BD}{CD}\)

hay \(CD^2=CH\cdot BD\)

a: AC=8cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/6=CD/10=(AD+CD)/(6+10)=8/16=1/2

=>AD=3cm; CD=5cm

\(BD=\sqrt{3^2+6^2}=3\sqrt{5}\left(cm\right)\)

b: góc EBD=góc EDB

=>góc EDB=góc ABD

=>DE//AB

Xét ΔCAB có DE/AB

nên DE/AB=CD/CA=5/8

=>DE/6=5/8

=>DE=15/4(cm)

10 tháng 2 2022

a) Ta có:

\(BC^2=AB^2+AC^2\)

\(10^2=6^2+8^2=36+64=100\)

Áp dụng định lí Pytago đảo 

⇒ Tam giác ABC vuông tại A

b) 1/ Xét tam giác ABD và tam giác EBD có

^A=^E=90o(gt)

BD: cạnh chung

^B1=^B2(BD phân giác ^B)

⇒ Tam giác ABD= tam giác EBD

2/ Em xem lại đề ha

a: Xét tứ giác DAKE có 

AK//DE

AK=DE
Do đó: DAKE là hình bình hành

mà AK=AD

nên DAKE là hình thoi

27 tháng 1 2022

A B C D E F

a. ta có : \(BC^2=AB^2+AC^2\)

             \(10^2=8^2+6^2\)

=> ABC vuông tại A ( pitago đảo )

b. xét tam giác vuông BAD và tam giác vuông BED có:

B: góc chung

BD : cạnh chung

Vậy...

=> AD = AE ( 2 góc tưng ứng )

 

27 tháng 1 2022

a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow100=36+64\)* đúng * 

Vậy tam giác ABC vuông tại A

b, Xét tam giác ABD và tam giác CBD ta có : 

^ABD = ^CBD ( BD là phân giác ) 

^BAD = ^BCD = 900

BD _ chung 

Vậy tam giác ABD và tam giác CBD ( ch - gn ) 

=> AD = DC ( 2 cạnh tương ứng )