K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

a, Chú ý EF là đường trung bình trong tam giác HAB

b, Chứng minh F là trực tâm tam giác BEC và sử dụng a)

c, Sử dụng tỉ số sinA trong tam giác vuông HAB và tỉ số tanA trong tam giác vuông BAC để tính AB, CB và AC, EC

16 tháng 11 2018

a) EF là đường trung bình của tam giác ABH => EF//AB; EF=1/2AB (1)

  Có G là trung điểm của DC => GC//AB(DC//AB); GC=1/2AB(DC=AB) (2)

 Từ (1)$(2) => EF//GC; EF=GC => Tứ giác EFCG là hình bình hành.

b) Xét tam giác EBH và tam giác CBH có:BH là cạnh chung

                                                            EHB=CHB=90 (gt)

                                                            EH=EC(H là trung điểm của EC)

     Vậy tam giác EBH=tam giac CBH (cgv-cgv)

          =>BEH=BCH ; EBH=CBH

Lại có:BEH+EBH+BCH+CBH=180 =>BEH=EBH=BCH=CBH=180/4=45 (3)

Co BCE+ECG=BCG

Ma BCG=90(ABCD là hcn); BCE=45(cmt)

    => ECG=45

Xét tam giác EGC có:EGC+GEC+ECG=180

                          => EGC=180-(GEC+ECG)

                                     =180-(90+45)=45 (4)

Tu (3)$(4) => BEG=90

c)Tu CM

1: Xét ΔHAB có 

E là trung điểm của HA

F là trung điểm của HB

Do đó: EF là đường trung bình

=>EF//AB và EF=AB/2

hay EF//CD và EF=CD/2

mà G là trung điểm của CD

nên EF=CG và EF//CG

=>EFCG là hình bình hành

22 tháng 10 2021

Bài 2: 

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

Đề sai rồi bạn