1) So Sánh A và B biết :
A = \(\frac{10^{50}+1}{10^{51}+1}\) ; B = \(\frac{10^{51}+1}{10^{52}+1}\)
2) Tìm x biết :
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}-4=0\)
3) Tính giá trị của biểu thức
\(\frac{1}{1.2} +\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{1999.2000}\)
MỌI NGƯỜI LÀM ĐI NHÉ ! CHÚC MỌI NGƯỜI VUI VẺ !
a/ Ta có :
\(10A=\frac{10\left(10^{50}+1\right)}{10^{51}+1}=\frac{10^{51}+10}{10^{51}+1}=\frac{10^{51}+1}{10^{51}+1}+\frac{9}{10^{51}+1}=1+\frac{9}{10^{51}+1}\)
\(10B=\frac{10\left(10^{51}+1\right)}{10^{52}+1}=\frac{10^{52}+10}{10^{52}+1}=\frac{10^{52}+1}{10^{52}+1}+\frac{9}{10^{52}+1}=1+\frac{9}{10^{52}+1}\)
Vì \(\frac{9}{10^{51}+1}>\frac{9}{10^{52}+1}\Leftrightarrow10A>10B\Leftrightarrow A>B\)
Vậy...
b/ Mình sửa lại một chút nhé :>
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}-3=0\)
\(\Leftrightarrow\left(\frac{x-1}{99}-1\right)+\left(\frac{x-2}{98}-1\right)+\left(\frac{x-3}{97}-1\right)=0\)
\(\Leftrightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Mà \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
Vậy...
c/ Đặt :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{1999.2000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{1999}-\frac{1}{2000}\)
\(=1-\frac{1}{2000}\)
\(=\frac{1999}{2000}\)
Vậy..