Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)
Vì \(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)
\(A=\frac{10^{50}+2}{10^{50}+1}=\frac{2}{1}=2\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{-1}{3}\)
\(\Rightarrow A>B\)
Ta thấy \(10^{50}>10^{50}-3\)
\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(A< B\)
C1:A = \(\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}\)
= \(1+\frac{3}{10^{50}-1}\)
B = \(\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}\)
= \(1+\frac{3}{10^{50}-3}\)
Vì \(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)=) \(1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\)=) \(A< B\)
C2: Áp dụng tính chất : Nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Vì B > 1 =) B > \(\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
(=) B > A
Ta có: \(\dfrac{10^{50}-3}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}-3}\)
=>\(\dfrac{10^{50}-3}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}-3}\)
vậy (đpcm)
\(\frac{10^{50}+1}{10^{50}-3}=\frac{\left(10^{50}-3\right)+4}{10^{50}-3}=1+\frac{4}{10^{50}-3}\)
\(\frac{10^{50}+3}{10^{50}-1}=\frac{\left(10^{50}-1\right)+4}{10^{50}-1}=1+\frac{4}{10^{50}-1}\)
Ta so sánh \(\frac{4}{10^{50}-3}với\frac{4}{10^{50}-1}\) . Ta có \(\frac{4}{10^{50}-3}\) > \(\frac{4}{10^{50}-1}\) => 1050+1/1050-3 > 1050+3/1050-1
Ta có :
\(\frac{10^{50}+1}{10^{50}-3}=\frac{10^{50}-3+4}{10^{50}-3}=1+\frac{4}{10^{50}-3}\)
\(\frac{10^{50}+3}{10^{50}-1}=\frac{10^{50}-1+4}{10^{50}-1}=1+\frac{4}{10^{50}-1}\)
Do \(\frac{4}{10^{50}-3}>\frac{4}{10^{50}-1}\)
\(\Rightarrow1+\frac{4}{10^{50}-3}>1+\frac{4}{10^{50}-1}\)
\(\Rightarrow\frac{10^{50}+1}{10^{50}-3}>\frac{10^{50}+3}{10^{50}-1}\)
Chúc bạn học tốt !!!
Ta có:
\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)
Vì \(10^{50}-1>10^{50}-3\Rightarrow\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)(2 phân số có cùng tử số, mẫu số của phân số nào lớn hơn thì phân
số đó nhỏ hơn)
\(\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)
\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}.\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}.\)
Do 1050-1 > 1050-3 ; => \(1+\frac{3}{10^{50}-3}>1+\frac{3}{10^{50}-1}\)
=> B > A