K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

Do P đi qua điểm A(-2;0); B(2;-4) và nhận đường thẳng x=1 là trục đối xứng

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(2\right)^2+2b+c=-4\\\frac{-b}{2a}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+-2b+c=0\left(1\right)\\4a+2b+c=-4\\2a+b=0\left(3\right)\end{matrix}\right.\Rightarrow2\left(2a+b\right)+c=-4\left(2\right)\)

Thế (3) vào (2)

\(\Rightarrow0+c=-4\Rightarrow c=-4\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-1\\c=-4\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Đồ thị hàm số  \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:

\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)

Đồ thị hàm số  \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):

\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow  - b = 12a \Leftrightarrow 12a + b = 0\)

\(a{.6^2} + 6b + c =  - 12 \Leftrightarrow 36a + 6b + c =  - 12\)

Từ 3 phương trình trên ta có: \(a = 3;b =  - 36,c = 96\)

=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)

3 tháng 4 2018

Vì parabol đi qua ba điểm A, B, C nên ta có hệ phương trình:

Vậy (P): y = -x2 + 2x

Chọn C.

26 tháng 7 2017

Đáp án A

26 tháng 8 2017

Đáp án C

26 tháng 11 2021

đáp án C

12 tháng 10 2020

Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có

\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)

\(\Rightarrow y=x^2-2x-24\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)