K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

Do P đi qua điểm A(-2;0); B(2;-4) và nhận đường thẳng x=1 là trục đối xứng

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(2\right)^2+2b+c=-4\\\frac{-b}{2a}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+-2b+c=0\left(1\right)\\4a+2b+c=-4\\2a+b=0\left(3\right)\end{matrix}\right.\Rightarrow2\left(2a+b\right)+c=-4\left(2\right)\)

Thế (3) vào (2)

\(\Rightarrow0+c=-4\Rightarrow c=-4\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-1\\c=-4\end{matrix}\right.\)

23 tháng 10 2020

parabol y= ax2+bx+c đi qua A(2,-7)

\(\Rightarrow-7=a.2^2+b.2+c\)

\(\Rightarrow-7=4a+2b+c\)

\(\Rightarrow4a+2b+c=-7\)(1)

parabol y=ax2+bx+c đi qua B (-5,0)

\(\Rightarrow0=a\left(-5\right)^2+b.\left(-5\right)+c\)

\(\Rightarrow0=25a-5b+c\)

\(\Rightarrow25a-5b+c=0\)(2)

parabol có trục đối cứng là x=2 nên ta có

\(\frac{-b}{2a}=2\Leftrightarrow-b=4a\Leftrightarrow4a+b=0\left(3\right)\)

từ (1) ,(2) và (3) ta có hệ phương trình

\(\left\{{}\begin{matrix}4a+2b+c=-7\\25a-5b+c=0\\4a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{7}\\b=\frac{-4}{7}\\c=\frac{-45}{7}\end{matrix}\right.\)

đây là theo cách mình làm thôi k hắc là đúng hya sai đâu cho dù sai bạn cũng dựa vào cái kiểu này mà tính nhé

23 tháng 10 2020

nhận đường thẳng x= 2 là trục đối xứng nha

6 tháng 3 2023

\(\left(P\right):y=ax^2+bx+2\)

Vì (P) đi qua điểm \(M\left(1;5\right)\) nên ta có: \(a.1^2+b.1+2=5\Leftrightarrow a+b=3\)    (1)

Mà (P) có trục đối xứng là \(x=\dfrac{-1}{4}\) nên:   \(\dfrac{-b}{2a}=\dfrac{-1}{4}\)

\(\Leftrightarrow-2a=-4b\Leftrightarrow-2a+4b=0\)                 (2)

Từ (1) và (2) ta có:  

\(\left\{{}\begin{matrix}a+b=3\\-2a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy parabol cần tìm có dạng:  \(y=2x^2=x+2\)

 

6 tháng 3 2023

xác định parabol (p): y= ax^2+2x+c biết rằng i (1/2; 11/2) là đỉnh của (p) 

giải dùm t câu này vs c

AH
Akai Haruma
Giáo viên
5 tháng 1 2022

Lời giải:
Parabol đi qua $A(2;19)$ nên $y_A=3x_A^2+bx_A+c$ hay $19=12+2b+c$

$\Rightarrow 2b+c=7(1)$

$x=\frac{-2}{3}$ là trục đối xứng 

$\Leftrightarrow \frac{-b}{2.3}=\frac{-2}{3}$

$\Rightarrow b=4(2)$

Từ $(1); (2)\Rightarrow c=-1$

Vậy parabol có pt $y=3x^2+4x-1$

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{6}=\dfrac{-2}{3}\\12+2b+c=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=-1\end{matrix}\right.\)

14 tháng 5 2017

+ Parabol y = ax2 + bx + 2 có trục đối xứng x = –3/2

⇒ –b/2a = –3/2 ⇒ b = 3a (1)

+ Parabol y = ax2 + bx + 2 đi qua điểm A(3; –4)

⇒ –4 = a.32 + b.3 + 2 ⇒ 9a + 3b = –6 (2).

Thay b = 3a ở (1) vào biểu thức (2) ta được:

9a + 3.3a = –6 ⇒ 18a = –6 ⇒ a = –1/3 ⇒ b = –1.

Vậy parabol cần tìm là y = –1/3x2 – x + 2.

22 tháng 7 2017

Đáp án A

27 tháng 3 2019

Đáp án A

NV
10 tháng 10 2019

Từ đề bài ta có:

a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)

b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì

21 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}4a+c=2\\-\dfrac{b}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-4a=2-4\cdot\left(-1\right)=6\\a=-1\end{matrix}\right.\)