làm ơn giải hộ mình mình sẽ cảm ơn rất nhiều
chứng minh rằng B chia hết cho 2 ; B=31 +32+33 + ............+ 3300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
lấy ví dụ n là 0;1;2
nếu thay n = 0 thì ta có 0^2.(0^2-1)=0 0 chia hết cho 24
nếu thay n = 1 thì ta có 1 ^ 2.( 1^2-1)=0 0chia hết cho 24
nếu thay n = 2 thì ta có 2^2 .(2^2-1)=12 nếu 12 chia 24 thì sẽ được 0,5
nếu thay n = 3 thì ta có 3^2 . (3^2-1)=72 72 chia hết cho 24
và cứ như vậy thì ta có n ^ 2 . ( n ^ 2 - 1) sẽ chia hết cho 24 nha bn đây là ý kiến riêng của mình nha
k mình nha bn
+ 40xy chia hết cho 4 nên 40xy là số chẵn => y là số chẵn
+ 40xy chia hết cho 5 nên y=0 hoặc y=5 do y chẵn nên y=0
+ 40xy=40x0 chia hết cho 3 nên 4+x chia hết cho 3 nên x=2 hặc x=5 hoặc x=8
=> x={2,5,8}; y=0
Ta có :B = 1 + 3 + 32 + 33 + 34 + 35 + ... + 397 + 398 + 399
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (397 + 398 + 399)
= (1 + 3 + 32) + 33 . (1 + 3 + 32) +...+ 397.(1 + 3 + 32)
= 13 + 33 . 13 + ... + 397.13
= 13.(1 + 33+ ... + 397) \(⋮\)13
Vậy B\(⋮\)13 (đpcm)
Ta có : B = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37+ ... + 396 + 397 + 398 + 399
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + ... + 396.(1 + 3 + 32 + 33)
= 40 + 34 .40 + ... + 396. 40
= 40.(1 + 34 + .. + 396) \(⋮\)40
Vậy B \(⋮\) 40 (đpcm)
a) B=1+3+32+33+...+399
B=(1+3+32)+(33+34+35)+...+(397+398+399)
B=(1+3+32)+33(1+3+32)+...397(1+3+32)
B=13+33.13+...+397.13
B=(1+33+...+97).13
=> b chia hết cho 13
b)B=(1+3+32+33)+...+(396+397+398+399)
B=(1+3+32+33)+34(1+3+32+33)+...+396(1+3+32+33)
B=40+34.40+...+396.40
B=(1+34+...+396).40
=> B hết cho 40
Ok rồi nha:v
\(K=2+2^2+2^3+...+2^{20}\)
\(2K=2^2+2^3+2^4+...+2^{21}\)
\(\Rightarrow K=2K-K=2^{21}-2=2097150⋮93\)
=> K chia hết cho 93
Ta có: 93=31*3
Bạn cm K chia hết cho 31 và 3
Vào Câu hỏi của friend forever II Lê Tiến Đạt
Nếu n là số lẻ => n+3 là số chẵn => (n+3) (n+6) chia hết cho 2
Nếu n là số chẵn => n+6 là số chẵn => (n+3) (n+6) chia hết cho 2
=> (n+3) (n+6) chia hết cho 2 với mọi STN n
Một lần nữa xin cảm ơn bạn ( le anh tu ) nhiều .
Thank you very very much .
Kết bạn nhé .
Chứng minh rằng: Số 11...1(n chữ số 1)-10n chia hết cho 9
Các bạn giúp mình với mình cảm ơn rất nhiều
a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1)
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1
.....
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3)
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1)
= 9.A + n
=>8n + 11111...1= 9A +9n chia hết cho 9
b.11111111....1 (gồm 27 số 1)
= 1111...100.....0 + 11111...10000...0 + 1111...1
-------------------------- ----------------------- -----------
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1
=111111111 x (10^18 + 10^9 +1)
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9)
10^18 chia 3 dư 1
10^9 chia 3 sư 1
=> 10^18 + 10^9 +1 chia hết cho 3
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)
6410 -32 11 - 1613 = 260 - 255 - 252 = 252 . 28 - 252 . 23 - 252
= 252 ( 28 - 23 - 1)
= 252 . 247 = 252 . 19 . 13
=> chia hết cho 19
dat n=3k+1 hoac n=3q+2 (k,q tu nhien)
n=3k+1 suy ra n^2=(3k+1)^2=9k^2+6k+1 chia 3 du 1
n=3q+2 suy ra n^2=(3q+2)^2=9q^2+12q+3+1 chia 3 du 1
B=\(3^1+3^2+3^3+...+3^{300}\)
=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{299}+3^{300}\right)\)
=\(3\left(1+3\right)+3^3\left(1+3\right)+...+3^{299}\left(1+3\right)\)
=\(3.4+3^3.4+...+3^{299}.4\)
=\(\left(3+3^3+...+3^{299}\right).4\)
Vì 4\(⋮\)2 mà trong một tích có 1 ts chia hết cho 2 thì tích đó chia hết cho 2 \(\Rightarrow\)B\(⋮\)2