Cho \(\Delta ABC:AB=4cm;Ac=4,5cm\). Trên \(AB;AC\) lấy các điểm M và N sao cho \(AM=AN=3cm.\)Gọi O là giao điểm của BN và CM. Tính \(\frac{OB}{ON}+\frac{OC}{OM}\).
Dùng định lý Ta lét giúp mk vs T.T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(BM=CM\) (vì M là trung điểm của \(BC\))
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right).\)
b) Theo câu a) ta có \(\Delta ABM=\Delta ACM.\)
=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
=> \(AM\) là tia phân giác của \(\widehat{BAC}.\)
c) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
Có \(AM\) là đường phân giác (cmt).
=> \(AM\) đồng thời là đường cao của \(\Delta ABC.\)
=> \(AM\perp BC\left(đpcm\right).\)
Chúc bạn học tốt!
A B C M
- Vẽ hình ko chính xác cho lắm!
Giải
a/ Xét ΔABM và ΔACM ta có:
AB = AC (GT)
AM: cạnh chung
MB = MC (GT)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{AMB}=\widehat{AMC}\)
Lại có: \(\widehat{AMB}\) + \(\widehat{AMC}\) = 1800 (kề bù)
=> \(\widehat{AMB}=\widehat{AMC}\) = 1800 : 2 = 900
=> AM ⊥ BC
Vì \(\Delta{MNP}=\Delta{DEF}\)
\( \Rightarrow DE = MN;EF = NP;DF = MP\) (các cạnh tương ứng)
\( \Rightarrow NP = 6cm\)
\( \Rightarrow \) Chu vi tam giác MNP là:
C = MN + MP + NP = 4 + 5 + 6 = 15 (cm)