K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

a, Xét tam giác ABC vuông tại A, đường cao AH

Theo định lí Pytago ta có : \(BC^2=AB^2+AC^2\Rightarrow14884=\left(\frac{5}{6}AC\right)^2+AC^2\)

\(\Leftrightarrow14884=\frac{25AC^2}{36}+AC^2=\frac{61}{36}AC^2\Rightarrow AC^2=14884:\frac{61}{36}=8784\Rightarrow AC=12\sqrt{61}\)cm 

\(\Rightarrow AB=\frac{5.12\sqrt{61}}{6}=10\sqrt{61}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=50\)cm 

b, Vì BI là đường phân giác => \(\frac{AB}{BC}=\frac{AI}{CI}\Rightarrow\frac{CI}{BC}=\frac{AI}{AB}\)

Theo tc dãy tỉ số bằng nhau \(\frac{CI}{BC}=\frac{AI}{AB}=\frac{AC}{BC+AB}=\frac{12\sqrt{61}}{122+10\sqrt{61}}\)

\(\Rightarrow CI=\frac{12\sqrt{61}}{122+10\sqrt{61}}BC=\frac{1464\sqrt{61}}{122+10\sqrt{61}}\)cm 

\(\Rightarrow IA=\frac{12\sqrt{61}}{122+10\sqrt{61}}AB=\frac{7320}{122+10\sqrt{61}}\)cm 

Theo định lí Pytago tam giác AIB vuông tại A

\(BI^2=AB^2+AI^2\Rightarrow BI=\sqrt{AB^2+AI^2}\)

\(=\sqrt{6100+\left(\frac{7320}{122+10\sqrt{61}}\right)^2}\)cm 

a:

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(CA^2=BA^2+BC^2\)

\(\Leftrightarrow CA^2=10^2+12^2=244\)

hay \(CA=2\sqrt{61}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BI là đường cao ứng với cạnh huyền AC, ta được:

\(\left\{{}\begin{matrix}\dfrac{1}{BI^2}=\dfrac{1}{BA^2}+\dfrac{1}{BC^2}\\BA^2=AI\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BI=\dfrac{60\sqrt{61}}{61}\left(cm\right)\\AI=\dfrac{50\sqrt{61}}{61}\left(cm\right)\end{matrix}\right.\)

a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

\(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

9 tháng 4 2023

loading...

AB=căn AH*AC=6(cm)

BC=căn AC^2-AB^2=căn 9^2-6^2=căn 45=3*căn 5(cm)

Xét ΔABC vuông tại B có sin C=AB/AC=6/9=2/3

nên góc C=42 độ

=>góc A=48 độ