K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8 2020

ĐTHS có 2 tiệm cận đứng khi và chỉ khi \(x^2-2mx+5=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}6-2m\ne0\\\Delta'=m^2-5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\left[{}\begin{matrix}m>\sqrt{5}\\m< -\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{-5;-4;-3;4;5\right\}\) có 5 giá trị

NV
18 tháng 6 2021

Xét hàm \(f\left(x\right)=x^5-5x^3-20x+m\)

\(f'\left(x\right)=5x^4-15x^2-20=0\) có 2 nghiệm

\(\Rightarrow f\left(x\right)\) có 2 cực trị

\(\Rightarrow y=\left|f\left(x\right)\right|\) có 5 cực trị khi \(x^5-5x^3-20x+m=0\) có 3 nghiệm bội lẻ

Từ BBT ta thấy \(y=-m\) cắt \(y=x^5-5x^3-20x\) tại 3 điểm pb khi và chỉ khi:

\(-48\le-m\le48\Rightarrow-48\le m\le48\)

\(\Rightarrow\) Có 97 giá trị nguyên của m

27 tháng 12 2021

https://video.vietjack.com/upload2/quiz_source1/2020/01/100-bai-trac-nghiem-ham-so-mu-va-logarit-co-loi-giai-chi-tiet-3-1-1579254891.PNG

bạn tham khảo nha

NV
15 tháng 4 2022

\(h\left(x\right)=f\left(x^2+1\right)-m\Rightarrow h'\left(x\right)=2x.f'\left(x^2+1\right)\)

\(h'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(x^2+1\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^2+1=2\\x^2+1=5\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;0;1;2\right\}\)

Hàm có nhiều cực trị nhất khi \(h\left(x\right)=m\) có nhiều nghiệm nhất

\(f\left(x\right)=\int f\left(x\right)dx=\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x+C\)

\(f\left(1\right)=0\Rightarrow C=-\dfrac{199}{12}\Rightarrow f\left(x\right)=-\dfrac{1}{4}x^4-\dfrac{5}{3}x^3-2x^2+20x-\dfrac{199}{12}\)

\(x=\pm2\Rightarrow x^2+1=5\Rightarrow f\left(5\right)\approx-18,6\)

\(x=\pm1\Rightarrow x^2+1=2\Rightarrow f\left(2\right)\approx6,1\)

\(x=0\Rightarrow x^2+1=1\Rightarrow f\left(1\right)=0\)

Từ đó ta phác thảo BBT của \(f\left(x^2+1\right)\) có dạng:

undefined

Từ đó ta dễ dàng thấy được pt \(f\left(x^2+1\right)=m\) có nhiều nghiệm nhất khi \(0< m< 6,1\)

\(\Rightarrow\) Có 6 giá trị nguyên của m

15 tháng 4 2022

f(5)≈−18,6 ở đâu ra vậy ạ?

24 tháng 7 2023

\(y'=\dfrac{x-m-x+1}{\left(x-m\right)^2}=\dfrac{1-m}{\left(x-m\right)^2}\)

Hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\Leftrightarrow y'< 0\forall x\in\left(-\infty;2\right)\Leftrightarrow\left\{{}\begin{matrix}1-m< 0\\x\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge2\end{matrix}\right.\Rightarrow m\ge2\)

Có 19-2+1=18 giá trị nguyên của m thỏa mãn

12 tháng 4 2022

undefined 9 đko nhỉ

13 tháng 4 2022

đáp án là 8 bạn, bạn viết vậy mình chả hiểu bắt đầu từ đâu và tiếp là đoạn nào luôn, đã viết giấy rồi thì chi tiết cho mình với ạ, mình đang muốn có người giải chi tiết ạ. Mình cảm ơn nhiều

NV
26 tháng 2 2021

Lưu ý rằng \(x^2+2>0\) với mọi x, do đó \(x^2+2=\left|x^2+2\right|\):

\(y=\left(x^2+2\right)\left|x^2-m\right|=\left|\left(x^2+2\right)\left(x^2-m\right)\right|\)

Tới đây là 1 bài biện luận cực trị của hàm trị tuyệt đối trùng phương khá cơ bản:

\(g\left(x\right)=\left(x^2+2\right)\left(x^2-m\right)=x^4-\left(m-2\right)x^2-2m\)

\(g'\left(x\right)=4x^3-2\left(m-2\right)x=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{m-2}{2}\end{matrix}\right.\)

Do \(g\left(x\right)=0\Leftrightarrow\left(x^2+2\right)\left(x^2-m\right)=0\Leftrightarrow x^2=m\) có tối đa 2 nghiệm

Đồng thời \(g'\left(x\right)=0\) có tối đa 3 nghiệm

\(\Rightarrow\) Hàm có 5 cực trị khi và chỉ khi \(g\left(x\right)=0\) có 2 nghiệm pb đồng thời \(g'\left(x\right)=0\) có 3 nghiệm pb và các nghiệm này ko trùng nhau

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\dfrac{m-2}{2}>0\\m\ne\dfrac{m-2}{2}\end{matrix}\right.\) \(\Leftrightarrow m>2\)

26 tháng 2 2021

có đứa bạn mình làm theo hướng là đạo hàm ngay từ đầu, nếu làm cách đó thì có nhanh hay dễ tư duy hơn không???

9 tháng 7 2021

đi từ hướng làm để ra được bài toán: 

Ta thấy muốn f(|x|) có 5 điểm cực trị thì f'(x) phải có 2 điểm cực trị dương

giải f'(x)=0 \(\left\{{}\begin{matrix}x=1\\x^2-2\left(m+1\right)x+m^2-1=0\left(2\right)\end{matrix}\right.\) phương trình (2) phải có 2 nghiệm phân biệt trái dấu nhau 

Ta có: \(\Delta>0\Leftrightarrow m>-1\)

Theo yêu cầu bài toán: \(m^2-1>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\) 

15 tháng 3 2021

Với \(m=0\Rightarrow f\left(x\right)=-2x-1\le0\Leftrightarrow x\ge-\dfrac{1}{2}\)

\(\Rightarrow m=0\) không thỏa mãn yêu cầu bài toán.

Với \(m\ne0\)\(f\left(x\right)\le0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=1+m\le0\end{matrix}\right.\Leftrightarrow m\le-1\)

\(\Rightarrow m\in\left\{m\in Z|-10< m\le-1\right\}\)

Vậy có 9 số nguyên thỏa mãn yêu cầu bài toán.