Cho n \(\in\) N*.CMR: (2n+3;3n+4)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A_n=\dfrac{\sqrt{2n-1}}{\left(2n+1\right)\left(2n-1\right)}=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n+1}}\right)\)
\(< \dfrac{\sqrt{2n-1}}{2}\left(\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\right)\left(\dfrac{1}{\sqrt{2n-1}}+\dfrac{1}{\sqrt{2n-1}}\right)\)
\(=\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}\)
\(\Rightarrow A_1+A_2+...+A_n< 1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+...+\dfrac{1}{\sqrt{2n-1}}-\dfrac{1}{\sqrt{2n+1}}=1-\dfrac{1}{\sqrt{2n+1}}< 1\)
Ta có: \(\orbr{\begin{cases}2n+1=4m+1\forall n⋮2\\2n+1=4m+3\forall n̸⋮2\end{cases}}\)n E N
Nếu 2n + 1 = 4m + 1
=> 22n+1 + 32n+1 = 24m+1 + 34m+1 = ...2 + ...3 = ...5 chia hết cho 5 [theo qui tắc về chữ số tận cùng bạn xem tại https://www.youtube.com/watch?v=p82ydQCe8jg]
Nếu 2n + 1 = 4m + 3
=> 22n+1 + 32n+1 = 24m+3 + 34m + 3 = ...8 + ...7 = ...5 chia hết cho 5 [theo qui tắc về chữ số tận cùng]
Vậy 22n+1 + 32n+1 chia hết cho 5 với mọi n E N
AI THẤY ĐÚNG NHỚ ỦNG HỘ NHÉ