Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
Ta có: \(E=36^n+19^n-2^n\cdot2\)
Mặt khác: \(36\equiv19\equiv2\)(mod 17)
Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)
Vậy .................
\(A=\left(2^{2^{2n}}+5\right)⋮7,\forall n\in N\) (1)
- Với n=0 ta có \(A=2^{2^{2n}}+5=7⋮7\)
Vậy (1) đúng với n=0
- Giả sử (1) cũng đúng với n=k, hay \(\left(2^{2^{2k}}+5\right)⋮7\)
\(\Rightarrow2^{2^{2k}}=7m-5\left(m\in N\right)\)
- Ta sẽ c/m (1) cũng đúng với n=k+1, tức là phải c/m:
\(\left(2^{2^{2k+2}}+5\right)⋮7\)
\(A=2^{2^{2k+2}}+5=2^{2^{2k}.4}=\left(2^{2^{2k}}\right)^4+5=\left(7m-5\right)^4+5\)
\(=\left(7K+25\right)^2+5=7M+25^2+5=7M+630\)
Dễ thấy \(\left(7M+630\right)⋮7\)
Hay (1) đúng với n=k+1
Ta có (1) đúng với n=0; với n=k; với n=k+1 nên theo nguyên lý quy nạp (1) đúng \(\forall n\in N\)
p/s: mk ko chắc lắm đâu, nếu có sai sót bn để lại bình luận nhé!
lũy thừa cũng có t/c như dòng thứ 8 à bạn ? Cái chỗ :
\(2^{2^{2k}.4}=\left(2^{2^{2k}}\right)^4\) ấy
\(\left(4^n-1\right)⋮\left(4-1\right)=3\)
Đặt \(4^n=3m+1\left(m\in N\right)\)
\(\Rightarrow2^{2n}\left(2^{2n+1}-1\right)-1=4^n\left(2.4^n-1\right)\\ =\left(3m+1\right)\left[2\left(3m+1\right)-1\right]-1\\ =\left(3m+1\right)\left(6m+1\right)-1\\ =18m^2+3m+6m+1-1\\ =9\left(2m^2+m\right)⋮9\)
Chứng minh bằng phương pháp quy nạp:
Với n =10=> 210=1024> 103=1000 hiển nhiên đúng
Giả sử n = k thỏa mãn đề bài là 2k>k3
tiếp theo chứng minh n = k+1 cũng thỏa mãn
với n= k+1 => k>9
Xét hiệu 2k+1 - (k+1)3= 2k+2k -k3 -3k(k+1)-1 = (2k-k3-1)+(2k-3k2-3k) (*)
Ta thấy: 2k>k3nên lớn hơn ít nhất 1 đơn vị vì 2kvà k3 đều là số tự nhiên
=> 2k-k3-1≥0 (1)
Đồng thời ta có: 3k2+3k> 3.9.9+3.9=270 =>-3k2-3k<-270
Và k3> 93>270 nên k3-3k2-3k>0 mà 2k>k3 =>2k-3k2-3k > 0 (2)
Từ (1) và (2) => (*)>0 => 2k+1>(k+1)3
Vậy theo phương pháp quy nạp toán học ta có 2n>n3, với mọi n ≥ 10 ∈ N.