K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

à thôi mn khỏi phải giải, mk làm đc r

12 tháng 2 2017

cậu chỉ ra mk xem cách giải cái  bài này nghĩ ma k ra  ak?

6 tháng 3 2018

Ta có: \(E=36^n+19^n-2^n\cdot2\)

Mặt khác: \(36\equiv19\equiv2\)(mod 17)

Do đó: \(VT\equiv2^n+2^n-2^n\cdot2\equiv0\)(mod 17)

Vậy .................

5 tháng 8 2017

\(A=\left(2^{2^{2n}}+5\right)⋮7,\forall n\in N\) (1)

- Với n=0 ta có \(A=2^{2^{2n}}+5=7⋮7\)

Vậy (1) đúng với n=0

- Giả sử (1) cũng đúng với n=k, hay \(\left(2^{2^{2k}}+5\right)⋮7\)

\(\Rightarrow2^{2^{2k}}=7m-5\left(m\in N\right)\)

- Ta sẽ c/m (1) cũng đúng với n=k+1, tức là phải c/m:

\(\left(2^{2^{2k+2}}+5\right)⋮7\)

\(A=2^{2^{2k+2}}+5=2^{2^{2k}.4}=\left(2^{2^{2k}}\right)^4+5=\left(7m-5\right)^4+5\)

\(=\left(7K+25\right)^2+5=7M+25^2+5=7M+630\)

Dễ thấy \(\left(7M+630\right)⋮7\)

Hay (1) đúng với n=k+1

Ta có (1) đúng với n=0; với n=k; với n=k+1 nên theo nguyên lý quy nạp (1) đúng \(\forall n\in N\)

p/s: mk ko chắc lắm đâu, nếu có sai sót bn để lại bình luận nhé!

lũy thừa cũng có t/c như dòng thứ 8 à bạn ? Cái chỗ :

\(2^{2^{2k}.4}=\left(2^{2^{2k}}\right)^4\) ấy

27 tháng 12 2021

\(\left(4^n-1\right)⋮\left(4-1\right)=3\)

Đặt \(4^n=3m+1\left(m\in N\right)\)

\(\Rightarrow2^{2n}\left(2^{2n+1}-1\right)-1=4^n\left(2.4^n-1\right)\\ =\left(3m+1\right)\left[2\left(3m+1\right)-1\right]-1\\ =\left(3m+1\right)\left(6m+1\right)-1\\ =18m^2+3m+6m+1-1\\ =9\left(2m^2+m\right)⋮9\)

29 tháng 7 2023

Chứng minh bằng phương pháp quy nạp:
Với n =10=> 210=1024> 103=1000 hiển nhiên đúng
Giả sử n = k thỏa mãn đề bài là 2k>k3
tiếp theo chứng minh n = k+1 cũng thỏa mãn
với n= k+1 => k>9
Xét hiệu 2k+1 - (k+1)3= 2k+2k -k3 -3k(k+1)-1 = (2k-k3-1)+(2k-3k2-3k) (*)
Ta thấy: 2k>k3nên lớn hơn ít nhất 1 đơn vị vì 2kvà k3 đều là số tự nhiên
=> 2k-k3-1≥0 (1)
Đồng thời ta có: 3k2+3k> 3.9.9+3.9=270 =>-3k2-3k<-270 
Và k3> 93>270 nên k3-3k2-3k>0 mà 2k>k3 =>2k-3k2-3k > 0 (2)
Từ (1) và (2) => (*)>0 => 2k+1>(k+1)3
Vậy theo phương pháp quy nạp toán học ta có 2n>n3, với mọi n ≥ 10 ∈ N.
 

29 tháng 7 2023

Thanks bạn. Mình quên bộ sung là n tự nhiên nữa.