Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
pt luôn có 2 nghiệm phân biệt
c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)
\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)
(số bình phương luôn lớn hơn bằng 0) với mọi n
2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
Vậy pt luôn có 2 nghiệm pb
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)
Vì x1 là nghiệm của pt trên nên ta được
\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)
Thay vào ta được
\(2nx_1-x_1-n^2+n-2x_2+3\)
bạn kiểm tra lại đề nhé
\(\left(4^n-1\right)⋮\left(4-1\right)=3\)
Đặt \(4^n=3m+1\left(m\in N\right)\)
\(\Rightarrow2^{2n}\left(2^{2n+1}-1\right)-1=4^n\left(2.4^n-1\right)\\ =\left(3m+1\right)\left[2\left(3m+1\right)-1\right]-1\\ =\left(3m+1\right)\left(6m+1\right)-1\\ =18m^2+3m+6m+1-1\\ =9\left(2m^2+m\right)⋮9\)
\(7.5^{2n}+12.6^n=7.5^{2n}+19.6^n-7.6^n\)
\(=7\left(5^{2n}-6^n\right)+19.6^n=7.\left(25^n-6^n\right)+19.6^n\)
\(=7.19.A\left(x\right)+19.6^n\)⋮ 19
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\) (1)
với mọi n \(\in\)N* , bằng phương pháp quy nạp
Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)
=> (1) đúng khi n = 1
Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có :
\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)
Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
=> Từ giả thiết quy nạp ta có :
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)
\(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)
\(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)
\(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*
Chứng minh bằng phương pháp quy nạp:
Với n =10=> 210=1024> 103=1000 hiển nhiên đúng
Giả sử n = k thỏa mãn đề bài là 2k>k3
tiếp theo chứng minh n = k+1 cũng thỏa mãn
với n= k+1 => k>9
Xét hiệu 2k+1 - (k+1)3= 2k+2k -k3 -3k(k+1)-1 = (2k-k3-1)+(2k-3k2-3k) (*)
Ta thấy: 2k>k3nên lớn hơn ít nhất 1 đơn vị vì 2kvà k3 đều là số tự nhiên
=> 2k-k3-1≥0 (1)
Đồng thời ta có: 3k2+3k> 3.9.9+3.9=270 =>-3k2-3k<-270
Và k3> 93>270 nên k3-3k2-3k>0 mà 2k>k3 =>2k-3k2-3k > 0 (2)
Từ (1) và (2) => (*)>0 => 2k+1>(k+1)3
Vậy theo phương pháp quy nạp toán học ta có 2n>n3, với mọi n ≥ 10 ∈ N.
Thanks bạn. Mình quên bộ sung là n tự nhiên nữa.