K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

M = [(n+1)^2+4]^2-(n+1)2+2012

Đặt (n+1)^2 = a ( a >= 0 )

Khi đó : 

M = (a+4)^2-a+2012

    = a^2+8a+16-a+2012

    = a^2+7a+2028

    = a^2+a+6a+2028

Xét : a^2+a = (n^2+2n+1)^2-(n^2+2n+1) = (n^2+2n+1).(n^2+2n) = n.(n+1)^2.(n+2)

Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

=> a^2+a chia hết cho 6

Mà 6a và 2028 đều chia hết cho 6

=> M chia hết cho 6

Tk mk nha

16 tháng 8 2018

8 phút trước (09:39)

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!

11 tháng 10 2017

khó thế

14 tháng 9 2020

Ta có: \(VT=\sqrt{\left(2n+1\right)^2}+\sqrt{4n^2}=\sqrt{\left(2n+1\right)^2}+\sqrt{\left(2n\right)^2}\)

\(=\left|2n+1\right|+\left|2n\right|\)

Vì \(n\inℕ\)\(\Rightarrow2n+1>0\)\(2n\ge0\)

\(\Rightarrow\left|2n+1\right|=2n+1\)và \(\left|2n\right|=2n\)

\(\Rightarrow VT=2n+1+2n=4n+1\)

Ta có: \(VP=\left(2n+1\right)^2-4n^2=\left(2n+1\right)^2-\left(2n\right)^2\)

\(=\left(2n+1-2n\right)\left(2n+1+2n\right)=4n+1\)

\(\Rightarrow VT=VP\)\(\Rightarrowđpcm\)

17 tháng 6 2016

Ta có: \(n+\left(n+1\right)>2\sqrt{n\left(n+1\right)}\left(AM-GM\right)\) suy ra:

\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{1}{\left(2n+1\right).\frac{\left(n+1\right)-n}{\sqrt{n+1}-\sqrt{n}}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)Áp dụng vào ta có:

\(S_n< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{1}{2}-\frac{1}{2\sqrt{n+1}}< \frac{1}{2}\left(đpcm\right).\)

17 tháng 6 2016

Đây bạn:

/hoi-dap/question/55444.html

17 tháng 6 2016

/hoi-dap/question/55444.html

17 tháng 6 2016

Bạn bấn vào đây, câu hỏi của bạn có người trả lời rồi Câu hỏi của Lương Ngọc Anh - Toán lớp 9 | Học trực tuyến

17 tháng 8 2015

Vừa post xong

Lời giải như sau: Kí hiệu \(n!=1\cdot2\cdots n\)  là tích \(n\)  số nguyên dương đầu tiên. Khi đó ta sẽ có

Tử số bằng  \(\left(2\cdot1\right)\left(2\cdot3\right)\left(2\cdot5\right)\cdots\left(2\cdot\left(2n-1\right)\right)=2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right).\)

Mẫu số bằng \(\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+5\right)\cdots\left(2n\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}=\frac{\left(2n\right)!}{n!}\cdot\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}\).

Suy ra \(a_n=\frac{2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right)}{\left(2n\right)!}\cdot n!\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)

\(=\frac{2^n\cdot n!}{\left(2\cdot1\right)\left(2\cdot2\right)\cdots\left(2\cdot n\right)}\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\).

Cuối cùng ta có  \(a_n=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)

\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1=y\left(y+2\right)+1=\left(y+1\right)^2\)

ở đó \(y=n^2+5n+4\) là số nguyên. Vậy \(a_n\) là số chính phương.

 

14 tháng 7 2017

by AM-GM: \(\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+n+1}\le\dfrac{1}{2}\left(\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\right)=\dfrac{1}{2}.\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)