Tìm số giá trị nguyên của m∈[0;30] để phương trình x4-6x3+mx2-12x+4=0 có nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, m\(x\) -2\(x\) + 3 = 0
Với m = -4 ta có :
-4\(x\) - 2\(x\) + 3 = 0
-6\(x\) + 3 = 0
6\(x\) = 3
\(x\) = 3 : 6
\(x\) = \(\dfrac{1}{2}\)
b, Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0
2m - 1 = 0
2m = 1
m = \(\dfrac{1}{2}\)
c, m\(x\) - 2\(x\) + 3 = 0
\(x\)( m -2) + 3 = 0
\(x\) = \(\dfrac{-3}{m-2}\)
Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2
d, Để phương trình có nghiệm nguyên thì: -3 ⋮ m -2
m - 2 \(\in\) { - 3; -1; 1; 3}
m \(\in\) { -1; 1; 3; 5}
Cái bạn viết không phải phương trình (không có dấu = ). Bạn xem lại đề.
Lời giải:
Để PT có nghiệm nguyên thì:
$\Delta=(2m-1)^2+20=t^2(*)$ với $t\in\mathbb{N}^*$
$\Rightarrow 2m$ cũng phải là số nguyên.
$(*)\Leftrightarrow 20=(t-2m+1)(t+2m-1)$
Vì $t+2m-1+t-2m+1=2t>0$ nên 2 thừa số này không thể cùng âm. Mà tích của chúng dương nên cả 2 thừa số đều dương.
Đồng thời $t+2m-1, t-2m+1$ cùng tính chẵn lẻ.
Do đó $(t+2m-1, t-2m+1)=(10,2); (2,10)$
$\Rightarrow m=2,5; -1,5$
Thử lại:
$m=2,5$ thì pt có nghiệm nguyên $x=5; x=-1$
$m=-1,5$ thì pt có nghiệm nguyên $x=1; x=-5$
1 ≤ N ≤ 10**9
1 ≤ N ≤ 10**9
Độ phức tạp lớn nhất O(log(10 ** 9))
a=-3 -> a=3
a=0 -> a=0
a=7 -> a=7
a=-2 -> a=2
a=1 -> a=1
a=-9 -> a=9
a=4 ->a=4
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2