K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2022

`a.` Với `x≠-2; +2`

Để `|A|=A` thì `A>0`

`=>` \(\dfrac{x+2}{x-2}>0\)

trường hợp `1:` \(\left\{{}\begin{matrix}x+2>0\\x-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x>2\end{matrix}\right.\Leftrightarrow x>2\) 

trường hợp `2:` \(\left\{{}\begin{matrix}x+2< 0\\x-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -2\\x< 2\end{matrix}\right.\Leftrightarrow x< -2\)

Vậy \(x>2\) hoặc `x< -2`

`c.` xét phương trình `A=m` 

\(\Leftrightarrow\dfrac{x+2}{x-2}=m\\ \Leftrightarrow x+2=m\left(x-2\right)\\ \Leftrightarrow x+2=mx-2m\\ \Leftrightarrow x-mx=-2m-2\\ \Leftrightarrow\left(1-m\right)x=-2m-2\\\)

để phương trình có nghiệm thì `1-m≠0 => m≠1`

 

 

 

 

 

 

26 tháng 5 2022

b) \(x>2\).

\(\left(x+1\right).A=\left(x+1\right).\dfrac{x+2}{x-2}=\dfrac{x^2+3x+2}{x-2}=\dfrac{x^2-2x+5x-10+12}{x-2}=\dfrac{x\left(x-2\right)+5\left(x-2\right)+12}{x-2}=x+5+\dfrac{12}{x-2}=x-2+\dfrac{12}{x-2}+7\ge2\sqrt{\left(x-2\right).\dfrac{12}{\left(x-2\right)}}+7=2\sqrt{12}+7\)\(\left(x+1\right).A=2\sqrt{12}+7\Leftrightarrow x=2+\sqrt{12}\)

 

 

 

16 tháng 6 2021

\(M=A+B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}+2\sqrt{x}}{\sqrt{x}+3}=\dfrac{3\sqrt{x}}{\sqrt{x}+3}\left(x\ge0\right)\)

16 tháng 6 2021

`M=A+B`

`=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx+3)`

`=(sqrtx+2sqrtx)/(sqrtx+3)`

`=(3sqrtx)/(sqrtx+3)`

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

11 tháng 11 2021

sao câu 1 hoài v ạ.Còn câu 2,3 nữa á.

Ta có: \(P=A\cdot B\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

11 tháng 9 2018

đkxđ: x≥0; x≠4

\(A=\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\right):\dfrac{\sqrt{x}+3}{2\sqrt{x}-x}=\left[\dfrac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+3}=\dfrac{\left(2+\sqrt{x}-2+\sqrt{x}\right)\left(2+\sqrt{x}+2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+3}=\dfrac{2\sqrt{x}\cdot4}{2+\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

Ta có: \(A>0\Leftrightarrow\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}>0\)

Ta thấy: \(\sqrt{x}+2>0\forall x\ge0;\sqrt{x}+3>0\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)>0\)

⇒ Để A > 0 thì 8x > 0 <=> x>0

Vậy x>0 thì A>0

a: ĐKXĐ: x<>1; x<>2; x<>-2; x<>-1

\(P=\dfrac{2017x+2017-2016x+2016-2014x-2016}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2015x+2017}{x^2-4}\)

8 tháng 7 2023

\(a,P\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(b,P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\\ =\dfrac{1}{\sqrt{x}}.\dfrac{\sqrt{x}-2}{3}\\ =\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

\(c,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4\left(\sqrt{x}-2\right)-3\sqrt{x}}{12\sqrt{x}}=0\\ \Leftrightarrow4\sqrt{x}-8-3\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}=8\\ \Leftrightarrow x=64\left(tmdk\right)\)

Vậy \(x=64\) thì \(P=\dfrac{1}{4}\)

7 tháng 8 2023

\(\dfrac{1}{M}=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)

\(B=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}-\dfrac{\sqrt{x}}{27}=\dfrac{27\sqrt{x}+54-x-5\sqrt{x}}{27\left(\sqrt{x}+5\right)}\)\(=\dfrac{-x+22\sqrt{x}+54}{27\left(\sqrt{x}+5\right)}\)

\(\Rightarrow\sqrt{x}.27B+135B=-x+22\sqrt{x}+54\)

\(\Leftrightarrow x+\sqrt{x}\left(27B-22\right)+135B-54=0\) (1)

Coi PT (1) là phương trình bậc 2 ẩn \(\sqrt{x}\)

PT (1) có nghiệm không âm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta=729B^2-1728B+700\ge0\\S=22-27B\ge0\\P=135B-54\ge0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2}{5}\le B\le\dfrac{14}{27}\)

Suy ra \(max_B=\dfrac{14}{27}\Leftrightarrow x=16\)

A làm tương tự 

7 tháng 8 2023

Không làm được alo nha, giờ hành chính đến 0h30 

ĐKXĐ: x>0; x<>9

\(A=\left(\dfrac{-\left(\sqrt{x}+3\right)}{\sqrt{x}-3}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}-\dfrac{4x}{x-9}\right):\left(\dfrac{5\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}\right)\)

\(=\dfrac{-x-6\sqrt{x}-9+x-6\sqrt{x}+9-4x}{x-9}:\dfrac{-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-4x-12\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4x\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(x-9\right)\left(\sqrt{x}-2\right)}=\dfrac{4x}{\sqrt{x}-2}\)

|A|>-A

=>A>=0

=>4x>0

=>x>0 và x<>9

16 tháng 11 2021

Đề sai rồi bạn

a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để |P|>P thì P<0

=>căn x-2<0

=>0<x<4

=>x=1