Cho a,b,c,d thuộc khoảng 0;1.Tìm max của A=a+b+c+d-(ab+ac+ad+bc+bd+cd)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
107.
\(\Leftrightarrow tan2x=-\sqrt{3}\)
\(\Leftrightarrow2x=-\frac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)
\(2000\pi\le-\frac{\pi}{6}+\frac{k\pi}{2}\le2018\pi\)
\(\Leftrightarrow4000+\frac{1}{3}\le k\le4036+\frac{1}{2}\)
Có \(4036-4001+1=36\) nghiệm
108.
\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{4}+k2\pi\\5x=-\frac{\pi}{4}+n2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{20}+\frac{k2\pi}{5}\\x=-\frac{\pi}{20}+\frac{n2\pi}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-50\pi\le\frac{\pi}{20}+\frac{k2\pi}{5}\le0\\-50\pi\le-\frac{\pi}{20}+\frac{n2\pi}{5}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-125-\frac{1}{8}\le k\le-\frac{1}{8}\\-125+\frac{1}{8}\le n\le\frac{1}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-125\le k\le-1\\-124\le n\le0\end{matrix}\right.\)
Có \(-1-\left(-125\right)+1+0-\left(-124\right)+1=250\) nghiệm
109.
\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0< -\frac{\pi}{12}+k\pi< \pi\\0< \frac{7\pi}{12}+k\pi< \pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{1}{12}< k< \frac{13}{12}\\-\frac{7}{12}< k< \frac{5}{12}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=1\\k=0\end{matrix}\right.\) có 2 nghiệm
110.
\(\Leftrightarrow cos2x=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
Ko có đáp án chọn nên ko thể bấm được, chỉ giải được tự luận thôi :)
a: y=x-5
=>x-y-5=0
M thuộc Ox nên M(x;0)
Theo đề, ta có: \(d\left(M;d\right)=2\)
=>\(\dfrac{\left|1\cdot x+\left(-1\right)\cdot0+\left(-5\right)\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\)
=>|x-5|=2căn 2
=>\(x=\pm2\sqrt{2}+5\)
b: N thuộc Oy nên N(0;y)
(d): x-y-5=0
Theo đề, ta có: \(d\left(N;d\right)=2\)
=>\(\dfrac{\left|0\cdot\left(-1\right)+y\cdot\left(-1\right)-5\right|}{\sqrt{1^2+1^2}}=2\)
=>|y+5|=2căn 2
=>\(y=\pm2\sqrt{2}-5\)