Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)
Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)
Phương trình d có dạng:
\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)
Hệ pt tọa độ giao điểm (C) và d:
\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)
Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)
Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)
Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm
Đáp án: D
Khoảng cách từ điểm M(-2;1) tới đường thẳng d: x + 3 y + 2 = 0 bằng:
Câu 2:
c/ DO M thuộc \(\Delta\) nên tọa độ M có dạng \(M\left(a;\frac{1-3a}{2}\right)\)
Áp dụng công thức khoảng cách:
\(\frac{\left|5a-\frac{3\left(1-3a\right)}{2}+2\right|}{\sqrt{5^2+3^2}}=5\)
\(\Leftrightarrow\left|13a+1\right|=10\sqrt{34}\)
\(\Leftrightarrow\left[{}\begin{matrix}13a+1=10\sqrt{34}\\13a+1=-10\sqrt{34}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=\frac{-1+10\sqrt{34}}{13}\\a=\frac{-1-10\sqrt{34}}{13}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(\frac{-1+10\sqrt{34}}{13};\frac{8-15\sqrt{34}}{13}\right)\\M\left(\frac{-1-10\sqrt{34}}{13};\frac{8+15\sqrt{34}}{13}\right)\end{matrix}\right.\)
d/ Chẳng hiểu đề câu d là gì luôn? Cái gì bằng 2 lần khoảng cách từ N đến d bạn
Câu 2:
a/ Khoảng cách:
\(d\left(A;\Delta\right)=\frac{\left|3.5+2.4-1\right|}{\sqrt{3^2+2^2}}=\frac{22\sqrt{13}}{13}\)
b/ Gọi \(M\left(x;y\right)\) là 1 điểm thuộc đường phân giác
\(\Rightarrow d\left(M;\Delta\right)=d\left(M;d\right)\)
\(\Rightarrow\frac{\left|3x+2y-1\right|}{\sqrt{3^2+2^2}}=\frac{\left|5x-3y+2\right|}{\sqrt{5^2+3^2}}\)
\(\Leftrightarrow\sqrt{34}\left|3x+2y-1\right|=\sqrt{13}\left|5x-3y+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{34}\left(3x+2y-1\right)=\sqrt{13}\left(5x-3y+2\right)\\\sqrt{34}\left(3x+2y-1\right)=-\sqrt{13}\left(5x-3y+2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3\sqrt{34}-5\sqrt{13}\right)x+\left(2\sqrt{34}+3\sqrt{13}\right)y-\sqrt{34}-2\sqrt{13}=0\\\left(3\sqrt{34}+5\sqrt{13}\right)x+\left(2\sqrt{34}-3\sqrt{13}\right)y-\sqrt{34}+2\sqrt{13}=0\end{matrix}\right.\)
Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)
\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)
\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)
\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
a) Ta có: \(\Delta \):\(\frac{x}{{ - 4}} + \frac{y}{2} = 1 \Leftrightarrow x - 2y + 4 = 0\)
Vậy khoảng cách từ O đến \(\Delta \) là: \(d\left( {O;\Delta } \right) = \frac{{\left| {1.0 - 2.0 + 4} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{4\sqrt 5 }}{5}\)
b) Lấy \(M\left( {0;1} \right) \in {\Delta _1}\)
Suy ra: \(d\left( {{\Delta _1},{\Delta _2}} \right) = d\left( {M,{\Delta _2}} \right) = \frac{{\left| {0 - 1 - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \)
a) Từ phương trình tổng quát của đường thẳng, ta lấy được một vecto pháp tuyến là: \(\overrightarrow n = \left( {1; - 2} \right)\) nên ta chọn vecto chỉ phương của đường thẳng d là: \(\overrightarrow u = \left( {2;1} \right)\).
Chọn điểm \(A\left( {1; - 2} \right) \in d\).Vậy phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 + t\end{array} \right.\) (t là tham số)
b) Do điểm M thuộc d nên ta có: \(M\left( {1 + 2m; - 2 + m} \right);m \in \mathbb{R}\).
Ta có: \(OM = 5 \Leftrightarrow \sqrt {{{\left( {1 + 2m} \right)}^2} + {{\left( { - 2 + m} \right)}^2}} = 5 \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2\)
Với \(m = 2 \Rightarrow M\left( {5;0} \right)\)
Với \(m = - 2 \Rightarrow M\left( { - 3; - 4} \right)\)
Vậy ta có 2 điểm M thỏa mãn điều kiện đề bài.
c) Do điểm N thuộc d nên ta có: \(N\left( {1 + 2n; - 2 + n} \right)\)
Khoảng cách từ N đến trục hoành bằng giá trị tuyệt đối của tung độ điểm N. Do đó, khoảng cách tư N đến trục hoành bằng 3 khi và chỉ khi: \(\left| { - 2 + n} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 1\end{array} \right.\)
Với \(n = 5 \Rightarrow N\left( {11;3} \right)\)
Với \(n = - 1 \Rightarrow N\left( { - 1; - 3} \right)\)
Vậy có 2 điểm N thỏa mãn bài toán